Hewitt

Cyborg Scripting Language Advanced
Customization — Participant’s Guide

Document Issue: 5.1

Document Issue Status:
Document Issue Level:
Document Issue Date:

Software Version:

Sixth Release
51

April 2004
51

Copyright Notice
Copyright® 2004 by Hewitt Associates LLC. All rights reserved.

Trademarks

Cyborg Systems® and eCyborg® and The Solution Series®
are registered trademarks of Hewitt Associates LLC.

The ASP Solution™ is a trademark of Hewitt Associates LLC.

Other third-party trademarks, service marks, logos, and tradenames that may appear,
but are not specifically mentioned, are the property of their respective owners.

eCTBORG

A Hewitt Solution

Hewitt Associates LLC, Suite 1700, 120 South Riverside Plaza, Chicago, Illinois 60606-3911

Contents

Contents

Section 1: Course Overview 1
(O 0T £X=l g1 (g0 (Vw1 1o o R 3

(000 T ESTC I (o]0 ES] 1ot SR 5

COUISE MALETIAIS ...vveiieeie ittt er e e st e e st e s e be e s sbee s sabeeesreee e 7

Section 2: Direct File Processing 9
100 L8] (o] o [11

The SOIULION SEIIES TIlES....co v 13

Reading random FIlES.........oovi i 17

Reading files sequENtiallyc.oovviiiii e 31

T =Toa A0 g A=) (] (o1)= T RRTST 35

L0 1] [oTod T 1o PSS 37

Writing and reWriting FECOIASecvveiieeiie s sreenre e 39

Deleting rECOIASveeieic e be e ee e beenreenreeas 45

SECLION SUMIMAIY ...veiveeieie e e et et e e st e et e e s re e sreesreesreesneeeseeesbeesreesneesnnenneeanes 49

T=Toa R 0] g A (< (o1 IR 53

Section 3: Option List Programming 55
100 L8 w1 £ To] o [57

OPLION TISES OVEIVIEW.cviiiieiee ettt e st ee e enes 59

Creating Option TSt IOGICve ittt 61

Compiling OptioN TSt IOQIC.......ccveiiiii e 65

(0% 1 T oo o] oo g I 1 ES1 [T | [o3 SR 67

SECLION SUMMANY ...ttt 69

T=Toa A0) (L (o1 R 71

Section 4: User-Defined Table Records 73
1010 L8 e (o] [T 75

User-defined table OVEIVIEBW..........oovveiii ittt 77

TabIE ANAIYSIS ... e 79

Table reCOrd TaYOUL.........oiiieiiic e s 81

Table field EfiNITIONSooiiiieiee et sbb e s sbaee s 87

SECLION 4 BXEICISE L...evveiiiieiiie ettt e ettt ettt e e s ettt e e s ettt e e s et b e e e e s ebbteeesaabaesesssbeneesssreeness 97

User-defined table entry fOrm ... s 99

Verify table definitions..........ccoiiiiiiiiie e 105

Table record read MELNOG..........cocviiii it ae e e s sabeeas 109

SECLION SUMMANY ...ttt bbbttt st 113

Y=o K0 I N (L (o1 IR 117

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 5: Employee Database Updating 119
OVEIVIEW ...ttt ettt et e et e et e e be e sbe e sbeesaeesabesabeebeesteesbeesteesrnens 121
INSEITING 8 SEOMENT......eiiiiiiietite e 123
DEleting @ SEOMENTcviitiiieitete ettt 131
Batch transaction UPAtiNgccverveieiiiiiiiie e 135
SECLION SUMMANY ...ttt bbbttt sttt 139
YT (o RSN (o 11 SR 141
Section 6: Special Report Options 143
INEFOAUCTION ...ttt et ens 145
Special Print OPtiON OVEIVIEW.c..civeiiiiiiecie ettt 147
Percentage of tOtal FEPOIToovv i 149
Multiple employee format—3 across [abels...........coooeveviiieiiii i 153
Report SChedule Parameters...........cvceieieeie e 157
System Control RepoSitory repOrting........ccvevevveiieieieeie e e 163
SECLION B BXEICISEvvveeierieteite ettt ettt sb ettt b bbbt sbe et e 165
Appendix A: Exercise Answers 167
SECHION 2 BXEICISE L....iieiiiieiee sttt ettt ettt et st e e e sbe et e sbenneas 168
SECHION 2 BXEITISE 2.ttt ettt ettt st e e sbe et e sbenne s 169
LT (o] IR Ao] (o [O P TURUUPRPR 171
SECHION 4 BXEICISE L....iiiiiiie ettt ettt ettt ettt et sbe et e sbenneas 174
SECHION 4 BXEITISE 2.ttt ettt ettt ettt e e e sbeereesbenne s 178
SBCHION D BXEICISE ...ttt ettt et se et sbestee e nne s 187
LT (o] O R e] (o [OSSPSR 189
Appendix B: Extra for Experts 193
Activating user-defined FIleScooiiiiiiii e 195
FILE23 delivered code fOor UNDX ... 198
FILE23 UNDX OVEITIAESevvevieiieiieiieiesiesiesieieie sttt eressestesaesseeeneas 199
FILE24 delivered code fOor UNDX.......cocoiiiiiiiiiieieees e 200
FILE24 UNDX OVEITIABSevvevieiieieeiieie st sieie ettt stessestesaesnenseneas 200
FILE25 delivered code for UNDX ... 202
FILE25 UNDX OVEITIAESevvevieiieiieiieiesiesie ettt sse st e sseneeneas 202
PULL Control Record With OVErrides:cooiiiiieiiiiie e 204
System Control Repository Key StruCtUre(S)eoerveieirirerieicieise s 206
Employee Database Key StrUCTUIE(S)........verveveieiiiiieniinierieieeeeeese e 216
Appendix C: The TRACE Utility 221
The TRACE ULHITY ... 222
Tracing an entire program ONKINE ..o 224
Tracing a portion of the program—batch reports...........ccocvevereieiciiireceee 225
Tracing paragraphs within a program—TRACE Verbs...........ccooovviiiiinincicn, 226
AAdItioNal TrACE TIPS ...veeeeeieee e 229
Reading the TRACE OULPULcoiiiiiiieeeee e 231
TRACE €XaMPIES ...t 232
Glossary 239
Index 257

Section 1: Course Overview

Section 1: Course Overview

Table of Contents

(@00 1T T L (oo V]2 o] o 3
(O o LU £ [0] oSSR 5
COUISE MALETTAISeeeiieviii e ittt ettt e ettt ettt e s ettt e e ettt e e e sbae e e s sabeeeseabbesssabeseessbbeeesasbeesesabessessabeeesssbbasesabensessbbenesssbansesne 7

Cyborg Scripting Language Advanced Customization - Participant's Guide

Course Introduction

« Purpose

« Benefits

« Audience

= Prerequisites
« Goals

« EXxpectations

NOTES

Section 1: Course Overview

Course introduction

Purpose

The purpose of this course is to teach you Cyborg Scripting Language (CSL)
skills for special file manipulations and programming techniques.

Benefits

The benefit of learning this information is to increase your CSL programming
skills. In the programming role, you will be able to perform more complex
programming tasks. System efficiency is also addressed.

Audience

This course has been designed for technical project members and data processing
personnel who are experienced CSL users.

Prerequisites
Before taking this course you should have completed the following courses:

W Using the Solution Series: Administrative Solutions
B Introduction to Cyborg Scripting Language

B Cyborg Scripting Language Customization

B Cyborg Scripting Language Report Customization

Goals
At the conclusion of this course you should be able to:

B |dentify the rules and programming techniques of reading, writing and deleting
records from The Solution Series files.

B Recognize and use techniques for special functions of query, form, and report
programs.

Expectations
To ensure that you accomplish the above goals please do the following:

B Ask questions.

B Share examples of your own Solution Series-related experiences.

B Ask where to obtain additional information if you have an interest in a point
that is introduced.

Cyborg Scripting Language Advanced Customization - Participant's Guide

Logistics

NOTES

Section 1: Course Overview

Course logistics

Use the space below and in the right column to take notes about the course
logistics.

Meals

Breaks

Telephones

Restrooms

Security

Questions

Cyborg Scripting Language Advanced Customization - Participant's Guide

Course Materials

NOTES

Section 1: Course Overview

Course materials
Participant guide
The participant guide contains the following sections:

Table of contents
B Each section contains a table of contents listing the topics within the section.

Text layout
B Upper pages typically contain copies of overhead transparencies or forms.

B Lower left pages contain information about the overhead transparency or form.
W Lower right pages are blank for your note taking.

Section exercise

B You will have an opportunity to practice what you have learned in each section
by completing section exercises. All sections except Section 1 have section
exercises.

Appendices
B Exercise Answers
Answers to section exercises.

B Extra for Experts
Additional CSL topics, System Control Repository and Employee Database
key layouts.

B The TRACE Utility
Additional CSL topics, which explain and provide examples for
tracing/debugging programs.

Glossary
Glossary and syntax for the CSL verbs in this course.

Index
An alphabetical listing of topics cross-referenced to page numbers.

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

Section 2: Direct File Processing

Section 2: Direct File Processing

Table of Contents

Ty goTo [FTex 1] o H OSSPSR 11
THE SOIULION SEIIES FIES ... bbbttt bbbt b e bt bt et e nne it 13
REAING FANAOM FIIES ...t bbbttt et b b e b bt s bt e bt et e et ene e e e nn et e 17
Reading files SEQUENTIAIIY ..o bbbttt bbb b snene s 31
SECLION 2 EXEICISE L...vieetiitisietiiteie sttt sttt stk b et b bbb st bt s bt e s bt s b b s e bt h e bbbt e ket b et n e st et en s 35
L0] (ool 1 o I 1 S UPUSUR 37
WIItING AN FEWITTING FECOTTS ...ttt ettt ettt bttt ettt e e b e bt b e et e e seen e e e e b e ebesbeebeeneaneenee e et ee 39
DIELING FECOMUS ...ttt ettt ettt et b et bt bt b bt e e bt e b e e e bt b e ekt e bt e ekt eh et ekt e b et ekt nb e e ebenbeseebennereas 45
LT 1o T TU 400 1SS 49
SECLION 2 EXEICISE 2.ttt ettt sttt skttt etttk b e bkt h e e b £ e a e e R e eb e bt ARt e b e e b £ Rt eb £ e s e en b e eeeebenbeeb e et e e beeb e en e et enbennen 53

Cyborg Scripting Language Advanced Customization - Participant's Guide

Objectives

= Recall the available Solution Series files
« ldentify random file key structure
» ldentify direct file processing verbs

= Create a program using
direct file processing

NOTES

10

Section 2: Direct File Processing

Introduction

Purpose
In this section we relate Solution Series file types and key structures to
input/output functions of programming.

Objectives
Upon completion of this section, you should be able to:

B Recall the available Solution Series files

B [dentify random file key structure

B Identify direct file processing verbs

B Create a program using direct file processing

11

Cyborg Scripting Language Advanced Customization - Participant's Guide

The Solution Series Files

File Name Organization | Assignment Input/ Record Size Purpose
Output
FILEO1 Random Disk Input/Output 80 System Control Repository
FILEO2 Random Disk Input/Output Variable Employee Database
(3060 max)
FILEO3 Sequential Printer Output 132 Audit/Report/Message
Print File
FILEO4 Sequential Reader Input 80 Control Records File
FILEOS Sequential Disk Input 80 Data Input File
FILEO6 Random Disk Output 80 Installation System Control
Repository
FILEO7 Random Disk Output Variable Installation Employee
(3060 max) Database
FILE10 Sequential Disk/Tape Output 80 Data Output File
FILE11 Sequential Disk/Tape Input 256 Payroll Process Batch
Master File
FILE12 Sequential Disk/Tape Output 256 Payroll Process Batch
Master File
FILE13 Sequential Disk/Tape Input 256 Payroll Process Batch
Master File
FILE14 Sequential Disk Input 150 Report Extract Input File
FILE15 Sequential Disk Output 150 Report Extract Output File
FILE17 Sequential Printer Output 132 Alternate Print File
FILE18 Sequential Printer Output 132 Alternate Print File
FILE19 Sequential Printer Output 132 Alternate Print File
FILE23 Random Disk Input/Output Variable User Defined File
(3060 max)
FILE24 Sequential Disk/Tape Input Variable User Defined File
(3060 max)
FILE25 Sequential Disk/Tape Output Variable User Defined File
(3060 max)
FILE30 Sequential Sequential Output 320 Savings Bonds
FILE31 Sequential Disk/Tape Output 132 Check Print
NOTES

12

Section 2: Direct File Processing

The Solution Series files

Input and output functions
Input and output operations are performed on Solution Series files by identifying
the file’s record key.

Typical file maintenance procedures include reading, writing, rewriting and
deleting records. Certain of these functions are limited to input files and others to
output files. The categories of Input/Output, Input Only and Output Only include:

Input/output files
Recall that these are The Solution Series input/output files:

B FILECL
B FILEO1
B FILEO2
B FILE23

Input only files
Recall that these are The Solution Series input-only files:

B FILEO4
B FILEOS
B FILE1l
B FILE13
B FILE14
B FILE24

Output only files
Recall that these are Solution Series output-only files:

FILEO3
FILEO6
FILEO7
FILE10
FILE12
FILE15
FILE25
FILE30
FILE31

13

Cyborg Scripting Language Advanced Customization - Participant's Guide

The Solution Series Files

System Control Repository Records

Employee Database Records

Record Description Record Description

Type Type

A Machine Parameter Records Binary Report Generators

B Working Storage Expansion Records xxxxxxD | Company Records

C Option Lists XXXXXXF Company Other Records

D HRMS Default Information XXXXxXG | Company Other Records

F Field Name Table (Data Dictionary) XXxXxXxxH | Tax Body Records

P Program Records (sub-divided by type) XXXXXXM | Employee Records

PC Org. Number Report Validation Records XXXXXXW | Employee Other Records

PD Org. Number Report Scheduling Records xxxxxxX | Employee Other Records

PE Report Scheduling Records V4 Is/Was Audit Records

Q Alternate Keys (used with QUERY) ZQ Online Pay Calculation Records
R Report Format Record ZR Report Viewing Records

RQM Query Maintenance Facility Records ZX Executable Code

RRM Report Maintenance Facility Records Y Session Records

RT Report Print Position Records YA Audit (Log) Records

T Tables ZZA Time Cards and Adjustment Records
Y Security Data ZN Audit Log Recs

ZL Lock Record(s) (temporary record)

System Control Repository (FILEOL) Employee Database (FILEO2)
24 56 Characters of Data Record 32 Character Key, | Maximum of 3028
Character Length Characters of Data
Key
User Defined (FILE23)
24 Maximum of 3036 Character of Data
Character
Key
NOTES

14

Section 2: Direct File Processing

The Solution Series files, continued

System Control Repository

The System Control Repository (FILEO1) contains programs, delivered option
lists, fields, and any other information needed to make the system run. Any time
you sign on the system, you are using the System Control Repository. The System
Control Repository (FILEOL) contains fixed, 80 byte records with a 24-character
key.

& Refer to Appendix B: Extra for Experts for a complete list of key structures.

Employee Database

The Employee Database (FILE02) contains your data. Both company level and
employee level information are defined and reside on the Employee Database.
The Employee Database contains variable length records with a maximum length
of 3060. The Record Key is 32-characters long. The record key begins in the byte
following Cyborg’s record length descriptor.

& Refer to Appendix B: Extra for Experts for a complete list of key structures.

User-defined

The random user-defined file (FILE23) can contain records with a maximum
length of 3060 and a Record Key of up to 24 characters. Specific definition of the
record size and key length are your responsibility.

& Appendix B: Extra for Experts provides detail on creating COBOL overrides to
define the record and key lengths for user-defined files.

15

Cyborg Scripting Language Advanced Customization - Participant's Guide

Reading Random Files

« Build the ‘search argument’
or key to the Record

= Read the random file using the key

= Check the status of the file read

NOTES

16

Section 2: Direct File Processing

Reading random files

Record retrieval random files

To read a record from a random file, a search argument must be used. In other
words the desired record to be retrieved must be described by its key attributes for
record look up. These steps are taken:

B The ‘search argument’ or key attributes are formatted in Pointer 7.

B An attempt is made to read the matching record using a CSL verb and the
record read is moved to Pointer 8.

B The status of the operation is verified by checking the contents of a system
maintained field.

All direct file operations including writing, rewriting and deleting require file
status checking.

17

Cyborg Scripting Language Advanced Customization - Participant's Guide

Reading Random Files using READ-UNIQUE

FILEO1 Example

Key Length MOVE '02' TO W7-02-008.
Key Contents MOVE 'TA' TO W7-02-010.
Read Operation READ-UNIQUE FILEOl.
Check Status IF STAT-KEY GREATER THAN '00'
PRINT 'No Table Record Found'
ELSE

PRINT W8-79-000.

FILEO2 Example:

Key Length MOVE "06" TO W7-02-044.
Key Contents MOVE *Z1~ TO W7-02-046.
MOVE SESSION-ID TO W7-04-048.
Record Read READ-UNIQUE FILEO2.
Status Check IF STAT-KEY NOT EQUAL "00*
PRINT "No Audit for this session”®
ELSE

PRINT "Operator 1d: " W8-04-026.

FILE23 Example

Key Length MOVE '04' TO W7-02-008.
Key Contents MOVE 'XXXX' TO W7-04-010.
Read Operation READ-UNIQUE FILE23.
Check Status IF STAT-KEY GREATER THAN 'O00'

PRINT 'No User File Record Found'

ELSE
PRINT W8-50-000.
NOTES

18

Section 2: Direct File Processing

Reading random files, continued

Note:

Reading FILEO1

To read a record from FILEOQ1, build a search argument of up to 24 characters,
then specify the keys length in Pointer 7. The specific fields for FILEOL are
KEYO01-SIZE a.k.a. W7-02-008, and KEY01-AREA a.k.a. W7-24-010.

Reading FILEO2

To read a record from FILEOQ2, build a search argument of up to 32 characters,
then specify the keys length in Pointer 7. The specific fields for FILEO2 are
KEY02-SIZE a.k.a. W7-02-044, and KEY02-AREA a.k.a. W7-32-046.

Reading FILE23

To read a record from FILE23, build a search argument of up to 24 characters,
then specify the keys length in Pointer 7. The specific fields for FILE23 are
KEYO01-SIZE a.k.a. W7-02-008, and KEY01-AREA a.k.a. W7-24-010.

READ-UNIQUE

When the file is read using READ-UNIQUE a record is read into the first
positions of Pointer 8, at displacement 000. The data can be processed from this
location or may be moved to other pointers where field names are defined.

RDBMS users using direct reads to Company, Tax, or Employee records on
FILEO2 will not build the logical record in memory. These FILEO2 records only
contain a reference of which relational tables must be read, not the actual data.

19

Cyborg Scripting Language Advanced Customization - Participant's Guide

Reading Random Files using READ-UNIQUE,

continued

STAT-KEY Description
00 Good 1/0
01 Record read has a key greater than the search argument key
10 End of file
22 Write failed due to duplicate record
23 Record not found (Delete or Rewrite)
24 Space exhausted
90 Invalid request
91 or 93 Invalid file number
95 Open failed
99 Invalid key
NOTES

20

Section 2: Direct File Processing

Reading random files, continued

STAT-KEY

Each time a record is read, the field STAT-KEY contains the result of the read.
The chart on the previous page shows the general list of STAT-KEY return
codes.

21

Cyborg Scripting Language Advanced Customization - Participant's Guide

Org. Number Field:

Read:
Display Data

Org. Number Field:

Key Field:
Read:
Display Data

Org. Number Field:

Key Field:
Read:
Display Data

Alternate Method of Reading FILEO?2

Company Record:

MOVE '999999' TO COMPANY-NUMBER.
READ-COMPANY .

PRINT COMPANY-NAME COMPANY-ADDRESS.

Tax Record:
MOVE '999999' TO COMPANY-NUMBER.
MOVE 'TX 2IL ' TO KEY-FIELD.

READ-TAXES.
PRINT TAX-BODY TAX-FILING-NUMBER.

Employee Record:

MOVE '999999' TO COMPANY-NUMBER.

MOVE '1234567890' TO KEY-FIELD.
READ-EMPLOYEE.

PRINT SOCIAL-SECURITY-NBR BIRTH-DATE.

NOTES

22

Section 2: Direct File Processing

Reading random files, continued

Note:

Note:

FILEOZ2 alternate
As an alternate to reading FILEO2 using READ-UNIQUE, you may wish to use
the various READ- verbs. The benefits include:

B Using the Command Line fields to build the key.
B Accessing data by field name instead of work name.
B More than one 3060-byte record may be read.

This is a requirement for RDBMS databases since these FILEQO2 records only
contain a reference of which relational tables must be read to build the logical
record in memory.

READ-COMPANY
Reads the company record data and moves it into Pointers 21-24. This verb
requires the COMPANY-NUMBER field (W7-06-240) as the key.

READ-TAXES

Reads the tax record and moves it into pointers 25-27. This verb requires the
COMPANY-NUMBER (W7-06-240) and KEY-FIELD (W7-10-254) fields as
the key.

READ-EMPLOYEE

Reads the employee record data and moves it into pointers 28-37. This verb
requires the COMPANY-NUMBER (W7-06-240) and KEY-FIELD (W7-10-
254) fields as the key.

Programs running in batch that issue a READ-verb will end abnormally if the
record is not found. A READ-UNIQUE and STAT-KEY check prior to the
READ-verb will avoid a program stop.

23

Cyborg Scripting Language Advanced Customization - Participant's Guide

Org. Number Field:

Key Field:
Addl Key Field:
Read:

Display Data

Org. Number Field:

Key Field:
Addl Key Field:
Read:

Display Data

Org. Number Field:

Key Field:
Addl Key Field:
Read:

Display Data

Alternate Method of Reading FILEO?2

Employee History Record:

MOVE '999999' TO COMPANY-NUMBER.

MOVE '1234567890' TO KEY-FIELD.

MOVE SPACES TO W7-04-264.
READ-HISTORY.

PRINT SOCIAL-SECURITY-NBR BIRTH-DATE.

Employee Labor Record:

MOVE '999999' TO COMPANY-NUMBER.

MOVE '1234567890' TO KEY-FIELD.

MOVE SPACES TO W7-04-264.

READ-LABOR.

PRINT SOCIAL-SECURITY-NBR BIRTH-DATE.

Current Employee History or Labor Record:

MOVE '999999' TO COMPANY-NUMBER.

MOVE '1234567890' TO KEY-FIELD.

MOVE SPACES TO W7-04-264.

READ-HL.

PRINT SOCIAL-SECURITY-NBR BIRTH-DATE.

NOTES

24

Section 2: Direct File Processing

Reading random files, continued

FILEOZ2 alternate

READ-HISTORY

Reads the employee history record data into pointers 28-37. This verb requires the
COMPANY-NUMBER (W7-06-240), KEY-FIELD (W7-10-254) and
ADDITIONAL-KEYs first four positions (W7-04-264) fields as the key. If the
ADDITIONAL-KEY field is left blank, the READ-HISTORY verb uses the
employees EA segment MASTER-NUMBER to read the most current history
record.

Subsequent reads use the ADDITIONAL-KEY field to find the next most current
History Record. The READ-HISTORY verb places the next previous MASTER-
NUMBER in the ADDITIONAL-KEY field for this purpose.

READ-LABOR

Reads the employee labor record data into pointers 28-37. This verb requires the
COMPANY-NUMBER (W7-06-240) and KEY-FIELD (W7-10-254) fields as
the key. The same functionality rules apply to this verb; however, this verb is
trying to read labor records instead of history records.

READ-HL

Reads either the employee labor or history record stored immediately before the
permanent master record into pointers 28-37. This verb requires the COMPANY-
NUMBER (W7-06-240) and KEY-FIELD (W7-10-254) fields as the key. The
same functionality rules apply to this verb; however, subsequent reads return the
next previous record.

Screen error

Each time these instructions are used, check the field SCREEN-ERROR field for
a value of “Y’. If this condition is true, there are no more history or labor records
for this employee.

25

Cyborg Scripting Language Advanced Customization - Participant's Guide

Custom READ- Verbs

KREAD-FILEZ23-RECORD
COMPANY - NUMEER.

EMFLOYEE-NUMEEF.

NOTES

26

Section 2: Direct File Processing

Reading random files, continued

Custom READ- verbs

The Create Read Verb (RDVERB) program enables you to create a customized
READ- verb. This READ- verb locates records in FILEO1, FILEO2, or FILE23,
based on literal values or fields.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: & Create a Read Verb

Result: The Create A Read Verb form (RDVERB) displays.

Form fields
® Verb Name
The defined name of the read verb. The name may be from 1-20 characters.

B File Number
The File Number field is used to identify the Random file to read. Valid file
numbers are 01, 02, and 23.

B Module Code
The Module Code field defines the specific module the verb/record is
associated with.

B 1st-8th Field
The 1st-8th field are used to specify up to eight literal values or valid field
names that specify the READ- verb’s key to be used in the read process.

27

Cyborg Scripting Language Advanced Customization - Participant's Guide

Custom READ- Verbs

Read FILEO1
Example:

Read FILEQO2
Example:

Read FILE23
Example:

XREAD-USER-TABLE.
IF STAT-KEY IS NOT EQUAL TO '0O0'

PRINT-REJECT 'SC900'
RETURN.
PRINT XMY-FIELD1 ' ' XMY-FIELD2

XREAD-FILEO2-RECORD.
IF STAT-KEY IS NOT EQUAL TO '0O'

PRINT-REJECT 'SC900'
RETURN.
PRINT W8-10-020 ' ' W8-30-030

XREAD-FILE23-RECORD.
IF STAT-KEY IS NOT EQUAL TO '0O0'

PRINT-REJECT 'SC900'
RETURN.
PRINT W8-05-007 ' ' W8-10-012

NOTES

28

Section 2: Direct File Processing

Reading random files, continued

Note:

Note:

Processing
The customized READ- verb performs the following when executed:

FILEO1 READ- verb

B Builds the FILEO1 key from the 1ST-8TH FIELD literal and field names.

M Reads FILEOL.

B If the record is found the data is placed into pointer 40 starting at displacement
000, otherwise, pointer 40 is initialized to spaces in the first 80 displacements.

The pointer number for the ‘X’ fields must be 40 as that is where the verb moves
the data.

FILEO2 READ- verb

B Builds the FILEO2 key from the 1ST-8TH FIELD literal and field names.

B Reads FILEO2.

B If the record is found the data is placed into pointer 8 starting at displacement
000, otherwise, the next highest record is placed into pointer 8 starting at
displacement 000.

FILE23 READ- verb

B Builds the FILE23 key from the 1ST-8TH FIELD literal and field names.

B Reads FILE23.

W |f the record is found the data is placed into pointer 8 starting at displacement
000, otherwise, the next highest record is placed into pointer 8 starting at
displacement 000.

It is important to check the STAT-KEY field which contains the status of the
READ- verb.

29

Cyborg Scripting Language Advanced Customization - Participant's Guide

Reading Random Files Sequentially

Key Length:
Key Contents:
Read Operation:
Check Status:
Read Loop:

Read Next:
Check Status:

Random File Example
MOVE '06' TO KEY01l-SIZE.
MOVE 'C HROO' TO W7-06-010.
READ-UNIQUE FILEO1.
IF STAT-KEY GREATER THAN '00' RETURN.
P100-LOOP.
PRINT 'Value: ' W8-14-007. SPACE-OVER
PRINT 'Description: ' W8-20-023. NEXT-LINE.
READ FILEOL.
IF STAT-KEY GREATER THAN '00' OR
W8-06-000 NOT EQUAL TO W7-06-010
RETURN
ELSE
GO TO P100-LOOP.

:05.

NOTES

30

Section 2: Direct File Processing

Reading files sequentially

Random files

A Random File may be read sequentially only after it has been read randomly.
Additionally, Random Files are automatically opened and closed by the CBSV
COBOL programs, therefore you will not need to OPEN or CLOSE Random
Files.

Once a random file record has been accessed with the READ-UNIQUE verb, and
the status key is checked for the first record, the next record on file can be read
using READ:

B Execute the READ verb

B Check the status of the read operation

B If the read is good, then process the data in Pointer 8 or move the data to the
appropriate pointers

It is important to note that these conditions must be avoided to insure a successful
sequential read:

B No random I/O operations can be performed between the execution of the
READ-UNIQUE and READ verbs

B The KEYO01-SIZE and KEYO01-AREA should not be changed

READ

The READ verb is used to sequentially process a file.

31

Cyborg Scripting Language Advanced Customization - Participant's Guide

Open Operation:

Read Loop:

Read Operation:

Check Status:

Read Next:

Reading Sequential Files

Sequential File Example
OPEN FILE1l4.

IF STAT-KEY NOT EQUAL '00'
PRINT-REJECT 'SC14090'
RETURN.

P100-LOOP.

READ FILE1l4.

IF STAT-KEY NOT EQUAL '0O0'
PRINT-MESSAGE 'SC002'
CLOSE FILE14 @Optional
RETURN.

PRINT W8-20-000. NEXT-LINE.

GO TO P100-LOOP.

NOTES

32

Section 2: Direct File Processing

Reading files sequentially, continued

Sequential files

Sequential Files may be read from start to finish using CSL. To process a
sequential file it may be necessary to OPEN and CLOSE the file.

OPEN

The OPEN verb is used to begin the processing of a file. The CBSV COBOL
program opens all standard files automatically.

CLOSE

The CLOSE verb is used to end the processing of a file. The CBSV COBOL
program closes all standard files automatically. DO NOT use the CLOSE verb for
a file unless the file has been opened by the same program and is being used by
that program only.

STAT-KEY

The STAT-KEY for sequential processing can be checked for a value of ‘00 for
a good record read, or ‘10’ for an end of file condition.

Example
Here are the steps in the sequential file read process:

B The OPEN is issued and the status is checked

W A record is read and the status is checked

B The record is processed

B Another read attempt is made, the file is closed when there are no more records
to read

33

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 2 Exercise 1

NOTES

34

Section 2: Direct File Processing

Section 2 exercise 1

Purpose
The purpose of this exercise is to give you practice retrieving and displaying a
record using the direct file method.

Directions
Take 20 minutes to write and execute an online program that performs the
following:

1. Read the System Control Repository (FILEO1) Option List Records with a
key of ‘C SC04’.

2. Display the Description and Value of each code in the Option List.
Option List Description: Displacement = 23
Length = 20
Option List Value: Displacement =7
Length = 14

35

Cyborg Scripting Language Advanced Customization - Participant's Guide

Unlocking a Random Record

Key

FILEO1 Read
Read Status
Unlock

Process Record

UNLOCK Example

MOVE 'PM' TO W7-02-010.

MOVE OPERATOR-ID TO W7-04-012.

MOVE '06' TO KEY01l-SIZE.

READ-UNIQUE FILEOLl.

IF STAT-KEY NOT EQUAL '00'
PRINT-MESSAGE 'SC130'
UNLOCK FILEOl
RETURN.

PRINT W8-10-000.

NOTES

36

Section 2: Direct File Processing

Unlocking files

File access

When accessing a random file with a READ-UNIQUE instruction, the file is
temporarily locked for access by other programs. This condition could produce a
‘wait state’ that is unfavorable. For system efficiency, we recommend the use of
the UNLOCK verb.

UNLOCK

UNLOCK is a verb used to unlock a file (FILEOL, FILEO2, FILE23) if the file
access method has lock/unlock capabilities. The file is automatically unlocked by
other 1/O instruction such as CALL, DELETE, WRITE, REWRITE or RETURN
(CYB900).

Control is passed back to CYB90 when RETURN is encountered or automatically
at the end of the program. However, when the next 1/O instruction to follow your
program’s execution is conditional, use UNLOCK to improve the system’s
response time.

Example
This example attempts to read an electronic message from the System Control
Repository. When no message exists, the file is unlocked for other 1/O processing.

B A FILEO1 Key is primed

B The record read is attempted

B The STAT-KEY is checked for an exact match

W [f there is no record for this key the file is unlocked and the *You have no
message’ message displays, otherwise the record is printed

37

Cyborg Scripting Language Advanced Customization - Participant's Guide

Writing Records to a File

Initialization

Format Output
in Pointer 8

Write Record

Open Operation:

Read Loop:

Read Operation:

Check Status:

Write Record

Read Next:

Example 1—Write FILE10
READ—EMPLOYEE.
INITIAL-80.
MOVE COMPANY—NUMBER TO W8—-06-000.
MOVE EMPLOYEE-NUMBER TO W8-10-006.
MOVE CONTROL 1-2 TO W8-06-016.
MOVE UNION—CODE TO W8-05-022.
MOVE UNION TO W8-15-027.
WRITE FILE10.

Example 2—Read FILEO5 Write FILEO1

OPEN FILEOS.

IF STAT-KEY NOT EQUAL "00*
PRINT-REJECT "SC05090*
RETURN.

P100-LOOP.

READ FILEOS.
IF STAT-KEY NOT EQUAL "00-
PRINT "SC002*
CLOSE FILEOS5 @Optional
RETURN.
WRITE FILEO1.
IF STAT-KEY EQUAL =22*
PRINT-REJECT "SCO1w22*".
GO TO P100-LOOP.

NOTES

38

Section 2: Direct File Processing

Writing and rewriting records
WRITE

The WRITE verb is used to write a record to a file. Since all 1/0 is from Pointer 8,
data must first be moved to this area prior to the write statement.

Record length

The length of data written to the output file is dependant upon the file specified in
the WRITE statement. For example, WRITE FILE10 outputs 80 positions of data
starting at displacement 000 of pointer 8, whereas WRITE FILE15 outputs 150
positions of data starting at displacement 000 of pointer 8.

Random files

When writing data to a Random File, be sure to check for a duplicate record after
the WRITE. A STAT-KEY value of ‘22’ indicates that a duplicate record key is
present and the write was unsuccessful.

Example 1

This example reads the employees record and extracts specific data to FILE10.
Note that:

W Pointer 8 is initialized to spaces using the INITIAL-80 verb.

B The fields are moved to specific displacement of Pointer 8.

W This program extracts only one employees data. If you wish to extract more
than one employee’s data, you should run the program under QUERY as a
batch process.

Example 2
This example reads records from FILEOS5 and writes them to FILEO1. Note that:

B The FILEOS data is assumed to be in FILEO1 format.
B The STAT-KEY is checked for each file-processing verb.

39

Cyborg Scripting Language Advanced Customization - Participant's Guide

Writing Records to a File

Initialization

Format Output
in Pointer 11

Write Record

Initialization

Format Output
in Pointer 11

Write Record

Example 1—WRITE-FILE10
READ—EMPLOYEE.
SPACE-EXTRACT—RECORD.

PRINT COMPANY-NUMBER
EMPLOYEE-NUMBER BIRTH-DATE
UNION—CODE UNION.

WRITE-FILE10.

Example 2—WRITE-EXTRACT
READ—EMPLOYEE.
SPACE-EXTRACT—RECORD.
PRINT COMPANY—-NUMBER
EMPLOYEE—NUMBER .

FIND—SALARY .
IF FOUND

OUTPUT ANNUAL—-SALARY
ELSE

OUTPUT "000000000".
WRITE-EXTRACT

NOTES

40

Section 2: Direct File Processing

Writing and rewriting records, continued
WRITE-
The WRITE- verbs are used to build the data to be extracted in the SCREEN area
(Pointer 11), then move the data to Pointer 8 where it is finally written to a file.
WRITE-FILE10
The WRITE-FILEL0 verb is used to write an 80-character record to FILE10. The

record is initially formatted in the SCREEN area using either PRINT or OUTPUT
verbs.

WRITE-EXTRACT

The WRITE-EXTRACT verb is used to write a 150-character record to FILE15.
The record is initially formatted in the SCREEN area using either PRINT or
OUTPUT verbs.

Examples 1 and 2

These examples read the employees record and extract specific data to either
FILE10 or FILE15. Note that:

B The SCREEN area (Pointer 11) initialized to spaces starting at displacement
1601 using the SPACE-EXTRACT-RECORD verb.

B The fields are moved to the SCREEN area using PRINT and OUTPUT verbs.

B The data is moved from the SCREEN area to Pointer 8, and written to their
respective file using the WRITE- verb.

W If you wish to extract more than one employee’s data, you should run the
program under QUERY as a batch process.

41

Cyborg Scripting Language Advanced Customization - Participant's Guide

1

Rewriting Records to a Random File

1 2

2

FILEOS Input:
3 3 4 4 5 5

6 6 7

7

8

--..5....0....5....0....5....0....5....0....5....0....56....0....5....0....5....0
AOO5Academy of Management

AOO7Acoustical
AO10Acoustical
AO15Adminstiv Mngmnt Soc

Open FILEO5:
Open Status:

Read Loop:
Read FILEO5:
Read Status:

FILEO1 Key:

FILEO1 Read:

Re-write Record:

Write Record:

Read Next:

Asn of ON
Soc of Am

OPEN FILEOS.

IF STAT-KEY NOT EQUAL 'O0O'
PRINT-REJECT 'SC05090'
RETURN.

P100-LOOP.

READ FILEOS.
IF STAT-KEY NOT EQUAL '00'

PRINT 'SC002'

CLOSE FILEO5 RETURN.

MOVE W8-80-000 TO W8-80-100.

MOVE 'C HR58

TO W7-07-010.

MOVE W8-04-100 TO W7-04-017.

@Hold Record

@Option List ID
@Association Code

MOVE SPACES TO W7-13-021.
MOVE '24' TO KEY01l-SIZE.
READ-UNIQUE FILEO1l.
IF STAT-KEY EQUALS '00'
MOVE W8-20-104 TO W8-20-024
REWRITE FILEO1l

ELSE
INITIAL-80
MOVE 'C HR58 ' TO W8-07-000

MOVE W8-04-100 TO W8-04-007
MOVE W8-20-104 TO W8-20-024

WRITE FILEO1l.

IF STAT-KEY NOT EQUAL 'O0O'
PRINT-REJECT 'SCO1w22'.

GO TO P100-LOOP.

@Association

@Option List
@Association
@Association

Descr

ID
Code
Descr

NOTES

42

Section 2: Direct File Processing

Writing and rewriting records, continued

Rewrite a record

To rewrite a record to a random file you must first read the record. For example,
you may wish to update the Trade and Professional Association Option List with
information provided from an outside source. To accomplish this you must
consider the following:

B If the record is new (Association Code), the record must be added to the
System Repository File, therefore it is written.

B If the record exists, the record must be updated, therefore it is rewritten.

REWRITE

The REWRITE verb is used to update the record currently in the 1/O area. This
record must have been previously retrieved and no other I/O can occur between
the retrieval and update. Also, the key cannot be modified.

Example

The example illustrates the Trade and Professional; Association example
discussed above. Note that:

B The FILEO1 record has to be first read using READ-UNIQUE to determine
which technique to use to update FILEOL.

B If the STAT-KEY does not indicate an exact match, the record is added using
the WRITE verb otherwise the record is updated using the REWRITE verb.

B STAT-KEY is checked for rewrite and an error is produced if the value
returned is not “00’.

43

Cyborg Scripting Language Advanced Customization - Participant's Guide

Deleting Records from a Random File

FILEO1 Key: MOVE '08' TO KEYO01l-SIZE.
MOVE 'PEWEEKLY' TO W7-08-010. @Report Schedule Record.

FILEO1 Read READ-UNIQUE FILEO1.
Read Status IF STAT-KEY NOT EQUAL '00'

PRINT-MESSAGE 'SC056' @Purge not performed
File Unlocked UNLOCK FILEO1l.

RETURN.
Record Delete DELETE FILEO1l.

IF STAT-KEY EQUAL '0O0'

PRINT-MESSAGE 'SC058' @Record has been Deleted
ELSE

PRINT-MESSAGE 'SC056'. @Purge not performed
RETURN.

NOTES

44

Section 2: Direct File Processing

Deleting records

DELETE

The DELETE verb is used to remove the most recently accessed record from a
file.

Example

This example deletes the first WEEKLY report schedule record from the System
Control Repository. The record to be deleted must be accessed and moved to the
Pointer 8 I/O area. This is done by the READ-UNIQUE.

B After the Key is primed, the record is read.
B The STAT-KEY is checked.

B If the record does not exist it cannot be deleted, and the ‘Purge not performed’
message displays.

W If the record does exist, the DELETE verb attempts to delete the record.

B |f the status of the DELETE is good (00), the “‘Record has been deleted’
message displays, otherwise the ‘Purge not performed’ message displays.

B The file is unlocked for efficiency to avoid a ‘wait state’ for other program’s
access (record could have been read and not deleted).

45

Cyborg Scripting Language Advanced Customization - Participant's Guide

Deleting Records from a Random File

Key Length
Key Area
Read FILEO1
Status Check

Group Delete

Key Length
Key Area
Read FILEO1
Status Check

Group Delete

Example 1—FILEO1 Delete:

MOVE '03' TO KEY01l-SIZE.

MOVE 'QTK' TO W7-03-010.

READ-UNIQUE FILEO1.

IF STAT-KEY NOT EQUAL '0O0'
PRINT-MESSAGE 'SCO056' @No Purge
RETURN.

DELETE-GLOBAL FILEO1l.

PRINT-MESSAGE 'SC001' @Delete complete

Example 2—Employee Database Delete:

MOVE "02" TO KEYO02-SIZE.

MOVE "ZR®™ TO W7-02-046.

READ-UNIQUE FILEO2.

IF STAT-KEY NOT EQUAL "00-
PRINT-MESSAGE "SC056" @No Purge
RETURN.

DELETE-GLOBAL FILEO2.

PRINT-MESSAGE "SC001" @Delete complete

NOTES

46

Section 2: Direct File Processing

Deleting records, continued

Group delete
Deleting a group of records from a random file can be accomplished more
efficiently with a special macro verb, DELETE-GLOBAL.

DELETE-GLOBAL
The DELETE-GLOBAL verb is used to delete a large number of records that
have the same partial key and reside together on the random file.

This verb performs a sequential read/delete based on the key built for the READ-
UNIQUE verb. Following the READ-UNIQUE syntax:

B The Key Length and Area are primed

B The READ-UNIQUE is executed for placement in the file
B The status is checked to insure correct record retrieval

B The DELETE-GLOBAL is executed

Example 1
This example will delete all alternate key records with an Alternate Key ID of
TK.

Example 2
This example will delete all reports that have been routed for online review.

47

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary

= The Solution Series
files and record keys

= Reading records

= Unlocking files

NOTES

48

Section 2: Direct File Processing

Section summary

In the space below, complete the Section Summary:
Files and key structure

The maximum key length for records in FILEO1 is: , FILEQ2 is: ,
and FILE23 is)

Reading records

The verb is used to read a record from a random file.

Building a search argument is required to read a random file. The fields used to
build the search argument are:

FILEOL: and

FILEO2: and

FILE23: and

The field is the system maintained 1/O status
indicator.

When a direct I/0O verb is executed, the record is read from the file to Pointer

The READ verb is used to a file.

49

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary, continued

« Writing and rewriting records

» Deleting records

NOTES

50

Section 2: Direct File Processing

Section summary, continued

Writing and rewriting a record

Writing a record requires moving data to Pointer starting at
displacement

The length of data moved to the output file is determined by

is a verb used to initialize the 1st 80 positions of

Pointer 8 to spaces.

Use the verb to update a file
record.

Deleting arecord

is used to remove a single record from a random file. To

delete a record, it must first be accessed with the or
verb.

is used to delete a group of records from a random file.
The records deleted are determined by the contents of the
and

51

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 2 Exercise 2

NOTES

52

Section 2: Direct File Processing

Section 2 exercise 2

Purpose
The purpose of this exercise is to give you practice retrieving, writing and
deleting a record using the direct file method.

Directions
Take 20 minutes to write and execute an online program that does the following:

1. Create a program to add the following reports to new a report group named
‘CLASS’. Remember that all report groups must have a title record.

& Refer to Appendix B: Extra for Experts for FILEOL key structures.
1A-RPT
1G-RPT
1R-RPT

For each write operation, check the status key and print a message (one per
line) that contains ‘STAT KEY: ‘ and the STAT-KEY value.

2. Verify that your report group ‘CLASS’ has been established.

3. Create another program to delete the report group named ‘CLASS’ from
FILEOL.

4. Verify the deletion of your report group ‘CLASS.’

53

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

54

Section 3: Option List Programming

Section 3: Option List Programming

Table of Contents

Ty goTo [FTex 1] o H OSSPSR 57
(O] o1 o g I T R0 AV= Vi 1= USSR 59
Creating OPLION TSt IOGICeueiueeiiiiee ettt ettt bbbt bt e e e be b e sbeebe et e e beene e e e e e beneen 61
ComPIliNg OPLION HSE IOGHC.eveiiitiit et bbbt b et b bbbttt 65
L0811 T ol o] o1t oL LT B (oo T[S 67
SEBCHION SUMIMIAIY ...ttt ettt ettt e e e te et e et e e st e eae e ebe e bees b e es b e ate e te e be e eeeseeeReeaReesbeenteenbeanbeanbesteenteesteasbeaneenrens 69
LT o =N (=] (o 11T OSSOSO URUSURRPPN 71

55

Cyborg Scripting Language Advanced Customization - Participant's Guide

Objectives

= Recognize the purpose
of option list logic

« ldentify the steps in
developing option list logic

= Create a calculation option list

NOTES

56

Section 3: Option List Programming

Introduction

Purpose

This section focuses on adding CSL logic to option lists.

Objectives
Upon completion of this section you will be able to:

B Recognize the purpose of option list logic
B Identify the steps in developing option list logic
W Create a calculation option list

57

Cyborg Scripting Language Advanced Customization - Participant's Guide

Option List Logic

« Calculation option list

« Relational edit option list

NOTES

58

Section 3: Option List Programming

Option lists overview

Function of option lists

As you will recall, option list records are used to validate a field against a list of
choices. In addition to this, an option list may have calculation or relational
editing logic attached to each code. The terminology to identify the two types of
logic that can be associated with an option list is:

W Calculation option list
B Relational edit option list

Calculation option list

A calculation enables different logic to be performed depending on which code is
selected for a field. The calculation resides in the body of the option list and is in
the form of CSL.

Relational edit option list

A relational edit enables different relational edits to be performed, depending on
which code is selected for a field. The edit resides in the body of the option list
and is in the form of CSL.

59

Cyborg Scripting Language Advanced Customization - Participant's Guide

Creating Option List Logic

Codeset EL Calc ka
HRS |

NOTES

60

Section 3: Option List Programming

Creating option list logic

Create option list logic
The option list records are built using the Edit Utility (EDIT) using an object of
Option List EL Calc (C/M) or Option List EL Edit (C/R).

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Programming Ultilities
Task: & Edit Control Repository Objects

Result: The EDIT prompt displays.

1. Select either Codeset EL Calc (C/M) or Codeset EL Edit (C/R).
2. Type the name of the Option List to edit and press enter.
Result: The Option List Edit form displays.

EDIT columns
The Edit form for option list logic column definitions are:

B Line Command
Specifies whether you are adding, changing or deleting the line.

B Code
14 positions code value.

W Seq
3-position sequence contains an M or R followed by a two-digit (nn) sequence
number.

B CodeSet Calc-EL Source
CSL Logic for each code value.

61

Cyborg Scripting Language Advanced Customization - Participant's Guide

Creating Option List Logic

COMMAND: |

Code 5eq Codeset Calculation - English Language Source
i Appraisal Ratings
N FAT ING-WALUE
i 01} PLO0-CALC-CODE-SET
i 02| MOYE '00000' TO WORK-RANGE-HMAX
I (Mane)
i 1-Outstanding
i MO1f MOVE :100.00 TO WORK-RANGE-MAX. CODE-SET-DONE.
|z 2-Above Standard
|z MO1f HOVE :080.00 TO WORK-RAMGE-MAX. CODE-SET-DONE.
i [3i-Standard
i 5] MO1| HOWVE :050.00 TO WORK-RAMGE-MAX. CODE-SET-DONE.
|4 4-Heeds Improvement
14 MO1f HOVE :040.00 TO WORK-RAMGE-MAX. CODE-SET-DONE.
|5 S-Unsatisfactory
15 MO1| MOWE :040.00 TO WORK-RANGE-MAX. CODE-SET-DOME.
17 7-Not Evaluated
|17 MO1f MOVE :070.00 TO WORK-RANGE-MAX. CODE-SET-DONE.
18 §-Too Hew To Rate
1a MO1f MOWVE :010.00 TO WORK-RANGE-MAX. CODE-SET-DONE.

Example: MOVE :100.00 TO WORK-RANGE-MAX.

CODE-SET-DONE .

NOTES

62

Section 3: Option List Programming

Creating option list logic, continued

Option list field

The field that is related to the option list must be defined with the option list
logic. The field name is defined in the 1st 20 positions of the CSL source, with a
code of spaces and a sequence number of “M’ for calculation option list, and ‘R’
for a relational edit option list.

Option list logic
The option list logic is related to each code in the option list by repeating the code
value and using the sequence field for each unique line of code.

B The sequence number for Calculation Option List logic is ‘“Mnn’ and for
Relational Edit logic is ‘Rnn’, where nn is a sequence number from 01-99.

B Lines of code independent of an option list value are considered common
initialization logic and can be added to the blank code value.

B The CODE-SET-DONE verb is used to mark the end of a calculation code
routine. It must be coded at the end of the calculation or edit logic for each
option list code.

63

Cyborg Scripting Language Advanced Customization - Participant's Guide

Compiling Option List Logic

Calculation Option List Compile

Relational Edit Option List Compile

NOTES

64

Section 3: Option List Programming

Compiling option list logic

Compiling option list logic
To compile Option List logic, use either the Compile Calculation Option List
(RECALC) or Compile Relational Option List (REEDIT) programs.

Compile calc option list
Make the following selections from the Navigator:
Component: @ Development Tools
Process: Option Lists
Task: & Compile Calculation Option List

Result: The Compile Calculation Code Set form (RECALC) displays.
Result: The Option List source is compiled.
Compile edit option list
Make the following selections from the Navigator:
Component: @ Development Tools
Process: Option Lists
Task: & Compile Relational Option List

Result: The Compile Edit Code Set form (REEDIT) displays.
Recompiled option lists must also be RELOADed.

65

Cyborg Scripting Language Advanced Customization - Participant's Guide

Invoking the Option List Logic

Example: CALC-CODE-SET 'HR16 '.
IF AVERAGE-RATING GREATER THAN WORK-RANGE-MAX
PRINT-REJECT 'HRO980'.

NOTES

66

Section 3: Option List Programming

Calling option list logic
Calling option list logic
To call the option list logic associated with the option list include either the

CALC-CODE-SET or EDIT-CODE-SET verbs in the relational edit portion of
the main program.

B CALC-CODE-SET
The CALC-CODE-SET verb is used in source code to call in calculation
option list logic (sequence ‘Mnn’) as an integrated subroutine. CALC-CODE-
SET must be followed by the name of the calculation option list as a literal, in
single quotes.

B EDIT-CODE-SET
The EDIT-CODE-SET verb is used in source code to call in edit option list
logic (sequence ‘Rnn’) as an integrated subroutine. EDIT-CODE-SET must be
followed by the name the calculation option list as a literal, in single quotes.

67

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary

« Option list programming
« Components of option list logic
« Compiling the option list logic

» Invoking the option list logic

NOTES

68

Section 3: Option List Programming

Section summary

In this section, you learned about calculation and edit option lists. Complete the
following question to summarize the section.

Option list programming

The utility is used to maintain option list logic on the
System Control Repository. An Object of indicates Calc
Option List logic, while an Object of indicates Relational

Edit Option List logic.

Components of option list logic

For calculation logic, the SEQ field must contain an entry of
for Calc Option List logic, and
for Relational Edit Option List logic.

A is required as the first entry in the Option List logic.

Each code’s logic is terminated with the verb.

Recompiling the option list logic
The utility program compiles calculation (M) logic. This
process produces ‘P’ Control File program records identified as

The utility re-compiles edit (R) logic and produces
‘P” Control File program records.

Invoking the option list logic

The verb invokes the calculation (M) logic from a main
program.
The verb invokes the edit (R) logic from a main program.

69

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 3 Exercise

NOTES

70

Section 3: Option List Programming

Section 3 exercise

Purpose
The purpose of this exercise is to create a program that calls option list logic.

1. Modify Option List PP29 by adding logic to calculate an annualized salary
for the employees regular pay (HED 001). The annualization calculation is as

follows:
SALARY * Annualization Factor (PERM-02-V2) = Annual Salary (PERM-
01-V2)
Frequency Annualization Factor
1 weekly 52.00
2 bi-weekly 26.00
3 semi-monthly 24.00
4 monthly 12.00

2. Modify the H1-SCR program to display the result of the calculation.

71

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

72

Section 4: User-Defined Table Records

Section 4: User-Defined Table Records

Table of Contents
g U oo (1T o] o ISR TSP RRROT 75
L0 LT o ey T eTo s o] Lol O AV A s ST 77
JLIEE 101 LT A 1] OSSO 79
QLI Lo Lo =ToToT (o I Yo | TSR 81
I o] [0 1 Lo o (5] T a1 (o] 4TRSS PP 87
T Tot o I =D (o3 [T ST 97
User-defined table NTIY FOIMoi e e ettt e e re e e et e e e nee e s 99
Verify 1able definMItIONSoov it e et e et e et esrb e s te e teebeereenraenreas 105
Table record read METNOG..........c.oo it e e et e et e et e e ebe e e sbeeebeeenbeesareesnnas 109
SECLION SUMMIAIY ...ttt bttt bbbtk b e ekt h e ekt e bt ekt e b et eb e eb e st ek e s b et ekt e b et ekt sb e st ebennebeebe e eteas 113
SEBCHION 4 EXEICISE 2...veiviireereetie et e et e cte e ete et e st esbeesbeeebeeteeaeesaseebeeabeeabeeabe et be st s e sbeesbeebeensesreeabeeabeenbeentesaseassenbeenbenns 117

73

Cyborg Scripting Language Advanced Customization - Participant's Guide

Objectives

» ldentify the steps to create
user-defined table fields/records

« Analyze user-defined data requirements

= Create a user-defined
table record layout

= Create new field definitions for a
user-defined table

« Create a data entry form
for the user-defined table

« Verify the user-defined definitions

NOTES

74

Section 4: User-Defined Table Records

Introduction

Purpose
In this section, you will learn the steps to create user-defined table fields/records
and a program for table record maintenance.

Objectives
Upon completion of this section you will be able to:

B [dentify the steps to create user-defined table fields/forms
B Analyze user-defined data requirements

B Create a user-defined table record layout

B Create new field definitions for a user-defined table

B Create a data entry form for the user-defined table

B Verify the user-defined definitions

75

Cyborg Scripting Language Advanced Customization - Participant's Guide

Creating User-Defined Tables

1. Analyze the data requirements

2. Create the record layout

3. Create the field definitions

4. Create the table maintenance form

5. Verify the table record field layout

NOTES

76

Section 4: User-Defined Table Records

User-defined table overview

User-defined tables

The Solution Series provides the capability to create user-defined table records.
To do so, complete the following procedure:

1. Analyze the data requirements

2. Create the record layout

3. Create the field definitions

4. Create the table maintenance form
5. Verify the table record field layout

77

Cyborg Scripting Language Advanced Customization - Participant's Guide

User-Defined Request and Analysis

MEMO
To: Jane Hanson, Programmer
From: John Grossman, Human Resource Director

Subject: Employee Supervisor Information

We need to have access to each employee’s supervisor. | am not familiar with a Solution Series program that
readily shows this information. 1’d like to be able to have supervisor information available for emergency
and personnel purposes. The Payroll department may use it to ensure that an employee received their check
or deposit advice.

Since we’re tracking an employee’s HRMS location, it would be useful to track all of the first-line
supervisors in the company based on that. We’d like to be able to revise records, retaining the old records
for reference. Perhaps we can develop a coding scheme for all of the supervisors in the company? 1’d be
glad to help you with that.

Here’s the information needed for each supervisor: name, work phone and extension, home phone and the
supervisor’s mail distribute data. The mail distribute data is essential to check distribution.

Please call me at x4541 if you have any questions.

NOTES

78

Section 4: User-Defined Table Records

Table analysis

Data requirements
The 1st step in creating user-defined table fields is to analyze the data
requirements. This determines how the data is to be stored.

B Are there existing, delivered techniques to accommodate the requirements?

B |[s the table record to be stored historically or is a single version of the table
entry sufficient?

B Does the Table data require more than one physical table record?
B What fields uniquely identify one table entry from another?

B Do any fields require validation?

B Are any fields required?

B |s the table’s use common or Organization specific?

Example analysis
Using the memorandum and the analysis questions provides these data
requirements for the user-defined Table record:

B There are no existing table records to satisfy this request.

B The table records are to be stored historically, that is, multiple versions of the
record are required, and therefore a date is necessary in the key.

B The table data fields do not exceed 80 characters. Only one physical record is
required.

B The Location and Supervisor code fields are validated against option lists. The
key fields for the table record are required.

B The table data usage is common to all organizations.

79

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table Record Layout

Table Record Setup

|| afielicliclclic il eliclcc] el ||| ||| |« | |lolo]ololo|ololo]o|plolo|olplololelolo|elolololelolo|ololololelololelplolblelolo|elolololelolo|ololololelololol
0/0j0000000000000000000000]0O0O0O000000000000O000O00000O00O0O00O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
0/0j0000000011111111112222/22222233333333334444444444555555555566666666667777777777
0/1/2345678901234567890123/45678901234567890123456789012345678901234567890123456789

Table Key Fields Table Data
Table Identifier

Record Identifier

Table Record Key

Multi-part Table Setup

[x] sl Il kIl]|k Il ||k |k &« |a|olblololololololololololololololololololblolololololblolololololblololo]
00000000000000000000000O0|OJOO0OO0O0O00O0000000O00000O000O00O0O00O0O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
00000000001111111111222|2/22222233333333334444444444555555555566666666667777777777
01234567890123456789012|3/45678901234567890123456789012345678901234567890123456789

Table Record Key Table Data

[x) alicll il Ll I |l Il |k [I |||« |s |olblololslolololblololololololblololololololblololslololololo]
ooooo00000OOQOOQOOOOOOOOZ1121f24212111111121111211
888888888899999999990000/00000011111111112222222222333333333344444444445555555555
01234567890123456789012|3/]45678901234567890123456789012345678901234567890123456789

Table Record Key Table Data

NOTES

80

Section 4: User-Defined Table Records

Table record layout

Note:

Table record layout

The 2nd step in creating a user-defined table is to construct a record layout for the
user-defined table.

The Record Layout consists of:
B Table Record Key—Record Identifier, Table Identifier, Table Key Fields
B Table Body—Non-key fields

Record identifier

The Record ID for a user-defined Table record is an “X’. This recommended
convention is to differentiate ‘T7, ‘U’, or ‘V’ table records from user-defined table
records.

Table identifier
The Table ID is any one character that will uniquely identify one user-defined
table record from another.

Table key fields

The table key fields are the final component of the table record key. The fields
define the remaining 22 positions of the record key. Key fields can include
alphanumeric, numeric fields, and date fields.

Table data
The table data contains the detail of the table record.

Multi-part table layout

When more than 79 characters of data are needed, multiple table records can be
used. Each table record would have the same key structure, except a one character
key separator is used in the last position of the key to uniquely identify each
record.

Data placed in the 80th position will be lost at the next upgrade of The Solution
Series, since the 80th position is used for an A, C, or D in MAINTI processing.

81

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table Record Layout

Table Record Setup

[X] Al KKK K [K K [K KK [K K [K K |K [K|K[K]K[K|K]K |[D]D|D|D]|D[D]D[D|D|D[D|D|D|D|D[D|D|D|D|D[D|D|D|D|D[D|D[D|D|D[D|D|D|D|D|DID[D|D[D[D|D[D|D|D|D|D[D|D|

0j]oj0 00000000000000O00O00O00O00OO0O0OO/0OO0OO0O0O0O0O0O0OO0OOOOOOOOOOOOODOOOODOOOOOOOOOOOOOOOOOOOOOOO
0Joj0 000000011111111112222/22222233333333334444444444555555555566666¢66¢686¢6777
0]1123456789012345678901234567890123456789012345678901234567890123456789012

Table Data

Table Key Fields

Table Identifier

Record Identifier

Table Record Key

NOTES

82

Section 4: User-Defined Table Records

Table record layout, continued

Key field design
The order of the key field layout is significant when the table record is read from
the System Control Repository. These decisions affect the layout:

B A determination about common or organization number specific usage (control
number).

B A determination about whether the table record is to maintain historical entries
(table date).

Key field order

When a control number is included in the table record layout, it should be the first
field following the user table identifier and table record identifier. Note that the
control number follows the ‘X1’ literal in the layout above.

Other key fields

Key fields are laid out in significance order; therefore, the most significant field
following the (optional) control number is first in the layout. The least significant
is the last.

When a table record entry is historical the key date field is typically the last field
in the key field layout. This design allows for ‘As of” logic. When the table record
is retrieved for use, this layout allows for matching on the more significant key
fields.

83

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table Record Layout—Example

Table Record Setup

x|x|x|x] 9] o] 9] o] o] 9] 9| 9] o] o|x [x|x || 9] 9] o] 9] o] o] 9f o] 9] O[X IX [X X X [X[X [X X |X]

o~
o~ -
o~ o
cwvo
c©ow®
o o~
ocw©®©
o w©ow
o w© <
o om
o w©ow
o w©
o w©o
owo
oww»
o~
owo
oww
ow <
owmnm
oww
ow
owo
ot o
ox®
o<~
o<
o<
o< <
ot m
o<
o<«
oxo
o Mmoo
omw»
oo~
o m o
omuwo
oms
omm
o MmN
omd
omo
o N O
oN®
oo~
o N
o N
o N <

Unused Non-Key

X1-SV-NAME

X1-SV-HOME-PHONE

X1-SV-WORK-PHONE

X1-SV-MAIL-DIST

X1-SV-WORK-EXT

SN ™
o NN
oo
oxno
o-o
O = ©
o~
o - ©
o«
o« <
o-m
o =N
O = -
oo
coo
cow®
con~
oo
ocouw’
oo«
com
cow

Unused key area

X1-SV-LOCATION

x| 1ol ol o] o|x [xx[x|c|v|¥m[pIp| | | | | | | |

oo«
S o o

X1-SV-CTRL-NBR

X1-SV-EFFECTIVE

Table Data

Table Record Key

NOTES

84

Section 4: User-Defined Table Records

Table record layout, continued

Table layout example

The example above shows the layout for the supervisor table record. Recall that
any given System Control Repository record is limited to 80 characters.

The example shows the result of creating the table layout with the information
derived from the analysis and memo requirements.

B The record layout shows the physical structure of the record.
W This step is critical in our process for creating user-defined table records, since
it will be used to create the field definitions.

Note: The table data may not be placed in the first 24 positions of the layout; this is
reserved for the key fields.

85

Cyborg Scripting Language Advanced Customization - Participant's Guide

Supervisor Control Number

NOTES

86

Section 4: User-Defined Table Records

Table field definitions

Define fields
The third step is to define the fields in the Field Name Table. This step will be
accomplished using Field Name/Maintenance utility (F-NAME).

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: ©& Define a Field

Result: The Field Maintenance and Edit form displays.
B Table fields must be defined in Pointer 40.

W Table key fields do not require a field type of K or P since tables are accessed
using direct file processing.

Field Examples
The table Layout is used to assist in determining the field definitions. The
following describes each field’s definition:

X1-SV-CTRL-NBR
This numeric field contains four digits. Its edit length is four positions with zero
decimals. It is edited as: 9999.

X1-SV-LOCATION-CD
This alphanumeric field contains four characters. It is edited against Code Set
HR439.

87

Cyborg Scripting Language Advanced Customization - Participant's Guide

Supervisor Job Description

[Field Maintenance snd eare]

|
%L1-S¥-LOCATION
44
004
008

_____ &
_____ &

305132

NOTES

88

Section 4: User-Defined Table Records

Table field definitions, continued
Field examples
X1-SV-LOCATION

This alphanumeric field contains four characters. It is edited against option list
PPSV.

X1-SV-EFFECTIVE

This field contains six digits. Its edit length is ten positions, it is edited as: MM—
DD-YYYY (US and Canada) or DD-MM-YYYY (elsewhere). This is a
century/key date retained on the file in complement form.

89

Cyborg Scripting Language Advanced Customization - Participant's Guide

Supervisor Name Code

|
%154 - NAME - CODE

Alpharumeric i

40]
004
74
=
=
110432

i

Supervisor Name

l -
K1-5%-NAME
Alpharumeric ka
Codeset Description |—
40)
003 [
24
_

______ 1
________ 1
1
|

______©&
______©&

100610

|

NOTES

90

Section 4: User-Defined Table Records

Table field definitions, continued
Field examples
X1-SV-NAME-CODE
This alphanumeric field contains four characters. It is edited against option list
PPSV.

X1-SV-NAME
This alphanumeric field contains 20 characters. It is the description of the value
found in option list PPSV.

91

Cyborg Scripting Language Advanced Customization - Participant's Guide

Supervisor Work Phone

i
K1-5Y-WORK-FPHOME

____©&
______©&

110410

K1-5W-WORK-EXT

el

____©&
______©&

3051352

NOTES

92

Section 4: User-Defined Table Records

Table field definitions, continued
Field examples
X1-SV-WORK—-PHONE

This numeric field contains ten digits. Its edit length is ten positions with zero
decimals. It is edited as: 9999999999.

X1-SV-WORK-EXT
This numeric field contains four digits. Its edit length is four positions with zero
decimals. It is edited as: 9999.

93

Cyborg Scripting Language Advanced Customization - Participant's Guide

Supervisor Home Phone

|
*1-5%-HOME - PHONE

_____ &
_____ &

110443

____©&
______©&

110464

NOTES

94

Section 4: User-Defined Table Records

Table field definitions, continued
Field examples
X1-SV-HOME-PHONE
This alphanumeric field contains ten digits. Its edit length is ten positions with
zero decimals. It is edited as: 9999999999.
X1-SV-MAIL-DIST
This alphanumeric field contains ten characters; it is edited as: 99999999909.

Multi part table fields

Multi part table records require the setup of field definitions for the key fields in
the second and subsequent records. These values are pre filled by the table form
program. The table data fields are defined in starting displacement 104 of pointer
40 for the second record.

95

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 Exercise 1

Table Record Layout
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

NOTES

96

Section 4: User-Defined Table Records

Section 4 exercise 1

Directions

Your organization has a need to store the number of days in each pay period for
each frequency code. More than one frequency identifier has been established for
use (ex: Weekly vs. Semi monthly). Each company within the organization may
have a different scheme for frequency code meaning. Design a table record layout
and field definitions for this purpose.

Layout
Use the form on the opposite page to complete the table layout.
Field Use Field Type/Length
Record Identifier* X
Table Identifier* Two
Control Number* Numeric, four positions
Table Pay Frequency* Alphanumeric, one position, Option List=PP29
Table Period End Date* Century Date, six positions

Table Workdays by Period ~ Numeric, three positions
Table Holidays by Period Numeric, three positions

*Key fields

97

Cyborg Scripting Language Advanced Customization - Participant's Guide

Create the Table Maintenance Form

« Form design using the
form design application

« CSL form program

NOTES

98

Section 4: User-Defined Table Records

User-defined table entry form

Data entry form

The 4th step in creating a user-defined table is to create the data entry form for the
table. This requires two development tasks:

The form design application

The form design application is used to design the form appearance. There is little
difference between the way you use Form Builder to design company or
employee forms and table forms. These minor differences are discussed on the
following pages.

CSL

Table forms are coded very differently than company or employee forms. This is
primarily because the table data is stored in the System Control Repository, and
there are a limited number of macro verbs available for programming table forms.

To simplify the development of the CSL program used in a table form, a template
program will be used to explain and develop the form. A copy of the template can
be found in Appendix B: Extra for Experts.

99

Cyborg Scripting Language Advanced Customization - Participant's Guide

Form Designs
Entry Mode Design

Form Builder - XSYSCR.SAT

2] [eol] [=0] [B6 [(@] [F] [A] 2]

Supervisor Table Screen Control Humber> XXXX

Inquiry/Select Mode Design

Form Builder - XSYSCR.SAT

2] [eol] [=0] [B6 [(@] [F] [A] 2]

Supervisor Table Screen Control Humber> XXXX

NOTES

100

Section 4: User-Defined Table Records

User-defined table entry form, continued
Form design
The three primary components of a form are:

B Form Header
Used to provide a form title as well as other informative information on the
form.

B Form Body
Used to provide either update or inquiry access to a field. Fields can be
represented as Edit Boxes, Inquiry Fields, Radio Buttons, Check Boxes, or List
Boxes.

B Context-sensitive menus
Contains prompts which are used to provide a link to the next logical form.

Entry mode design
Regardless of your form design, layout key fields must adhere to the following
rules:

B All key fields must be grouped in table layout order.

B The last key field MUST indicate paragraph 850 in the exit routine After field
of the Entry Dialog.

B All key field labels will end with a *>* (greater than) symbol denoting the fact
that the field is a key.

B Non-key data follows the key fields.

B An empty row should exist between the last key field and the first non-key data
field on the form, when possible.

B The CONTROL-NUMBER must be in Screen Section ‘5’ at the top right
corner of the form, in inquiry.

B If needed, define the key separator field at displacement 23 in each record but
do not include it on the form layout.

Select/Inquiry mode design
The format of the Select/Inquiry form section must contain the following format:

B Headings appearing on two lines above the entry field with the data displayed
inside the unprotected areas.

B All key fields must appear in order from left to right as entry fields.

B One non-key field must appear immediately following the key fields as an
entry field.

B All remaining non-key fields that will fit onto one line will appear as inquiry
fields.

B Itis arequirement that labels are painted on lines 5/6 with the data fields
falling on line 7.

101

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table forms

Example of single part table form - TE-SCR

Legislators
01-01-1925

Exec/ &dmn/ Mangr

Officials/ Managers Officials/&dmins
Mo Code Entered Mo Code Entered

Example of two part table form - TA-SCR

asoo
1-01-2002

L CENTER OFERATOR

elephone Operatars

15t Shift

Hourly Union

Mot & Trainee Job

NOTES

102

Section 4: User-Defined Table Records

User-defined table entry form, continued

Creating a table form

To simplify the development of the CSL program used in a table form, you could
find an existing table form that is similar to your requirements and copy the code.
You can then make changes to that code to get the results you require.

A suggestion would be to use the existing code from the Occupation Group Table
(TE-SCR) for single part tables and the code from the Job Code Table (TA-SCR)
for two part tables.

Make and test small corrections at a time to the new table program until it is
correct. If it is still not working correctly, use the TRACE utility to see where the
problems lie. Details on the TRACE utility can be found in Appendix C: The
TRACE Utility.

103

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table Data Entry Form and Verification

Entry Mode

[Supervisor Table Screen Control Number=35333 |

Location Supervised® Region 3333 ﬂ

Effective Dater 01-01-1330|

Mame: William Haze

Work Phone: 3124541865| Ext.: 0045
Home Fhone: 312555?898]
Mail Distribution: 024-33 |

E e

Inquiry/Select Mode

Location Effective Work Home Mai |
zuperyised Date Name Phone Phaone Distribution

o | 3030 03-26-1998 JOHN 31245415865 3125551579 13H-72

o 3333 0l-01-1990 EILL 3124541865 3125557895 024-33

o | 33588 01-01-1999 JACK 31245415865 3125551313 13D-56

NOTES

104

Section 4: User-Defined Table Records

Verify table definitions

Verify form and fields
After creating the table form it is necessary to verify that the program functions
properly. Verification includes:

W Key fields are the first Entry field on the form, and are in table layout order.
W Key fields are required.
B Valid values can be entered into each field:

« Date fields require data in the format YYMMDD or MM-DD-YY (US and
Canada) or YYDDMM or DD-MM-YY (elsewhere).

o Numeric fields accept the proper number of integers and decimals. Results
are displayed to the form properly.

o Name fields require data in ‘Last, First” format.

o Required fields must be entered, otherwise an error occurs.

o Option list fields are edited against an option list.

« Option list description fields display the description properly.

B Enter at least three table records and test the selection of the top, bottom, and
middle records.

105

Cyborg Scripting Language Advanced Customization - Participant's Guide

Verify the Table Layout

NOTES

106

Section 4: User-Defined Table Records

Verify table definitions, continued

Verify table layout
The final verification step is to match your original hard copy Table record layout
to the physical layout of the record.

The Display System Control Repository utility (DSP01) allows you to view
System Control Repository records.

To access the Display System Control Repository utility (DSP01):
Make the following selections from the Navigator:
Component: @ Development Tools

Process: System Control Repository Utilities
Task: & List System Control Repository

Result: The Display System Control Repository HELP displays.

1. Type a System Control Repository record key, for example X1 (a partial key is
valid).

2. Press Enter.

Result: The Display Control File utility (DSP01) displays the requested System
Control Repository records.

107

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table READ- Verbs

K1-5W-READ-TAELE

Ty

0B -CODES

TRL - THREE

OCATIOM-EFFECTIVE

NOTES

108

Section 4: User-Defined Table Records

Table record read method

READ- verb utility

Recall that the Create a READ- Verb (RDVERB) utility is used to create a read
macro verb. In our example, we will create a READ- verb to access a specific
supervisor table record.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: & Create A READ Verb

Result: The Create A READ Verb form (RDVERB) displays.

Supervisor read verb

To create the Supervisor read verb, which will be used to access the supervisor
information for a specific employee, the table key fields must be built using the
employee’s location information.

B VERB NAME—X1-SV-READ-TABLE is the name of the verb that is
created by the utility for your use. Recall that an “X’ in the 1st position is used
to distinguish user-defined verbs from delivered verbs.

B FILE NUMBER—The FILE NUMBER field contains 01 for the System
Control Repository.

MODULE CODE—The MODULE CODE field specifies the PP
Payroll/Personnel application that the verb/records reside within.

1ST FIELD—The literal X1 is the Record ID and Table ID.
2ND FIELD—The JOB—CODES cross-reference field.
3RD FIELD—The HRMS Location CTRL-THREE for the employee.

4TH FIELD—The HRMS Location LOCATION-EFFECTIVE for the
employee.

B 5TH-8TH FIELD—Unused.

FILEO1 READ- verb
Recall the functions that the READ- verb performs:

B Builds the FILEO1 key from the 1ST-8TH FIELD literal and field names.

M Reads FILEOL.

W If the record is found (STAT-KEY=00), the data is placed into pointer 40
starting at displacement 000. Otherwise, pointer 40 is initialized to spaces in
the first 80 displacements.

109

Cyborg Scripting Language Advanced Customization - Participant's Guide

Using X1-SV-READ-TABLE

[Supervisor ITnformation AUSTIN, STEVEM

Location: Region 3030
Effective Date: 03-26-1998

Supervisor
HName: John Johnsaon
Work Fhone: 3124541865
Extension: 0013
Home Fhone: 3125551579
Mail Distribution: 13H-72

P100-START.
READ-EMPLOYEE.

SCREEN-SECTION "0".
P150-FIND-LOCATION.

FIND-LOCATION.

IF NOT FOUND

PRINT "No Location Found®™ RETURN.
P200-READ-CROSS-REFERENCE-TABLE.
MOVE CURRENT-DATE TO CROSS-REFERENCE-DATE.
READ-TZAX-TABLE.
P300-READ-X1-TABLE.
X1-SV-READ-TABLE.

SCREEN-SECTION "1°.

NOTES

110

Section 4: User-Defined Table Records

Table record read method, continued

Example
Before the X1-SV-READ-TABLE verb can be used, several fields used in the
verb must be accessed:

B The Cross-Reference Table record is read after executing the READ-TZAX-
TABLE verb. This verb requires a valid date in the field CROSS-
REFERENCE-DATE before it is executed.

B The HRMS Location segment for the employee must be accessed to obtain the
CTRL-THREE and LOCATION-EFFECTIVE data.

Read status
The code generated for the FILEO1 read depends on the length and contents of the
key fields named in the 1ST-8TH field parameters:

B If the key data does not include a century/complement date as the last key
field, the total key length is used to read the record and verify that the record
was found.

B If a century/complement date is the last of the key fields, the total key length is
used for the read, however only the key fields up to but not including the date
field are used to determine if the record was found. This allows for an *As of’
technique for reading records.

If the record is found, the data is moved into Pointer 40, otherwise spaces are
moved to Pointer 40.

Multi-part records
To read a multi-part record, execute a READ FILEO1 statement. The guidelines
for the READ verb are in Section 2 of this documentation.

111

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary

« User-defined segments overview
« Data requirements analysis

» User-defined table layout

NOTES

112

Section 4: User-Defined Table Records

Section summary

User-defined table overview
The steps to create user-defined Table records include:

1
2.
3.
4
o)

Data requirements analysis
Table key design must consider a common or use.

Each Table record cannot exceed characters.

If the Table usage requires a history of information, a
field is the last key field design.

User-defined table layout
A Table’s record layout consists of a and

The Table Record Key consists of a ,a
, and

The Record Identifier value is

The Table Key fields are placed in displacements and
the Table Data starts in displacement

Multi-part Tables must designate a field.

113

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary, continued

= User-defined field definitions
» User-defined entry form

« Verify user-defined definitions

NOTES

114

Section 4: User-Defined Table Records

Section summary, continued

User-defined field definitions
Table record field definitions use pointer

The 1st Table Key Field starts in displacement :
When a Control Number is used, it is the Table Key field.

When a date is used, it is typically the Table Key field
unless a Table Key Separator is incorporated for multi-part records.

The Table Data fields of a multi-part record start at displacement

User-defined entry form
The last key field defined in the Form Builder design must perform Paragraph
after the field is displayed.

Table record read method
The utility can be used to create Table record read logic.

115

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 Exercise 2

NOTES

116

Section 4: User-Defined Table Records

Section 4 exercise 2

Directions

Complete the Pay Period Days Table by designing the form using the form design
application. Write a program to display the number of paydays and workdays in a
pay period. Use the following steps as your development guidelines:

1. Use the form design application to create the form’s appearance using the
fields defined in Section 4 Exercise 1. Do not forget to Perform paragraph
850 after the date field.

2. Test the form by entering data into the table and verifying the entry and
inquiry/select modes. Additionally, match the layout defined in Section 4,
Exercise 1 to the layout of each record stored in FILEOL (DSPO1 utility).

117

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

118

Section 5: Employee Database Updating

Section 5: Employee Database Updating

Table of Contents
OVBIVIBW ...ttt ettt etttk bbbt bt et e s b e b e b b e e b€ e E £ 4R £ 2R b e E e b e AR AR €A E £ 4 H e e b b e b e m b e bt eb e e b e eb e eb e e bt e bt eneenn e b e 121
INSEITING 8 SEOIMENT ...ttt ettt ettt ettt et e b e bt b e b e bt et e e s e es e e eeeeb e b e ebeebeeReeme e e e abesbesaeebeebeaneareeneeneennens 123
DEIELING @ SEOMENT ... ittt bttt b etk b etk b et b e e b st e bt b et e b b e bt e bt b et e b b e b eb e b et s bt et bt 131
BatCh tranSaCtion UPAALINGccveiviiiieie ettt ettt et te et e e est e e et e tesbeateereaneereeneeneeneenees 135
LT[0 IR 0] 0= Y OSSPSR 139
LT (o T =] (o 1TSS 141

119

Cyborg Scripting Language Advanced Customization - Participant's Guide

Objectives

« Recognize the syntax and
use of INSERT- verbs

« Recognize the syntax and
use of DELETE- verbs

= Describe the process of batch
transactions updating

NOTES

120

Section 5: Employee Database Updating

Overview

Purpose
In this section you will learn alternative techniques of Employee Database
updating.

Objectives
When you complete this section you will be able to:

B Recognize the syntax and use of INSERT- verbs
B Recognize the syntax and use of DELETE- verbs
W Describe the process of batch transactions updating

121

Cyborg Scripting Language Advanced Customization - Participant's Guide

INSERT- Verbs

Verb Segment Type Segment data
INSERT-B-SEGMENT B Company Hours, Earnings & Deductions
INSERT-C-SEGMENT C Other Company Information
INSERT-D-SEGMENT D Batch Payroll Report Requests
INSERT-F-SEGMENT F Employee Name and Address
INSERT-G-SEGMENT or INSERT-PTR31 G Employee Labor Splits
INSERT-H-SEGMENT or INSERT-PTR32 H Employee Hours, Earnings & Deductions
INSERT-J-SEGMENT or INSERT-PTR34 J Employee Taxes
INSERT-L-SEGMENT or INSERT-PTR36 L Human Resource/User Employee Data
INSERT-P-SEGMENT P Employee Period End
INSERT-PTR36-BATCH L Human Resource/User Employee Data (Batch)
NOTES

122

Section 5: Employee Database Updating

Inserting a segment

Segment updating
In addition to updating segments using a form, you can accomplish updates using
the INSERT- verb. This verb is used in:

B Form programs
B Packaged report programs
B Query programs

INSERT rules
The rules for INSERT- include:

W Initialize the Pointer 8 work area.

B Create the segment layout in field displacement order in Pointer 8, starting at
displacement 000.

B Position the pointer to the segment to be inserted using a FIND or SET verb
before the INSERT.

INSERT- verbs

The INSERT- verbs are used for a particular Segment Type. All of the INSERT-
verbs recalculate the pointer addresses of the segments that follow them except
for INSERT-PTR36. INSERT-L-SEGMENT should be used instead of
INSERT-PTR36. INSERT-PTR36-BATCH should be used in batch programs to
initialize SCREEN-ERROR to ‘F’ prior to the insert.

Initialization

The INITIAL-SEGMENT-AREA verb initializes the first 110 positions of
pointer 8 to spaces. INITIAL-x-SEGMENT verbs initialize the segment type and
that segment’s fields to either spaces or zeroes, as appropriate, starting at
displacement 000 of pointer 8.

123

Cyborg Scripting Language Advanced Customization - Participant's Guide

INSERT- Form Example

Example 1: Inserting an L Segment from the Performance Appraisal Results (49—-SCR)
UPDATE-EMPLOYEE.

P300-VERIFY.
SET-FOR-MESSAGES .
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED GO TO
P999-PROMPTS.

Calculate Next IF APPRAISAL-TYPE EQUALS "JA*
Appraisal Date: MOVE "010000" TO WORK-TIME-SPAN
CALCULATE RATING-DATE + WORK-TIME-SPAN
= HOLD-DATE
Position Pointer: FIND NEXT-APPRAISAL-TYPE STARTING WITH
HOLD-DATE
IF FOUND RETURN
ELSE
Initialize Ptr 8: INITIAL-SEGMENT-AREA
Build Segment: MOVE "LZS*® TO W8-03-000

MOVE HOLD-DATE TO W8-06-003
MOVE *JA® TO W8-02-009
Insert Segment: INSERT-L-SEGMENT .

Example 2: Update a G Segment from the Location Assignment/Changes (05CSCR)
UPDATE-EMPLOYEE.

P300-VERIFY.
SET-FOR-MESSAGES .
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED GO TO
P999-PROMPTS.

Read System READ-TG-TABLE.
Options: IF STAT-KEY GREATER THAN "01" RETURN.
Position Pointer: FIND CONTROL-3
IF NOT FOUND RETURN.
Update Segment: IF CONTROL-THREE-SWITCH EQUAL =3*

MOVE CTRL-THREE TO CONTROL-3.
IF CONTROL-FOUR-SWITCH EQUAL -3*°
MOVE CTRL-FOUR TO CONTROL-4.
IF CONTROL-FIVE-SWITCH EQUAL *"3*
MOVE CTRL-FIVE TO CONTROL-5.
IF CONTROL-SIX-SWITCH EQUAL "3*
MOVE CTRL-SIX TO CONTROL-6.

NOTES

124

Section 5: Employee Database Updating

Inserting a segment, continued

Warning

Form example

Recall, that updating a segment using a form is automatic when the UPDATE-
and ENTRY verbs are used. However, to create other segments within a different
segment or additional segments within the same segment the INSERT- logic is
used. Use INSERT- only after the verification logic has executed.

Example 1
This example shows inserting the next performance appraisal segment from the
Performance Appraisal Results form (49-SCR).

B The FIND positions the pointer where the segment is to be inserted using the
segment key value.

B If the segment is not found the segment is built in pointer 8 with the segment
type, Segment Code, Segment Key and segment fields. Then the segment is
inserted into the record, and is updated to the file by the UPDATE-
EMPLOYEE logic.

Example 2
This example shows an update to the Payroll Home Location/Pay Allocations
Segment from the Location Assignment/Changes form (05CSCR):

B Once the Pointer is positioned, each non—key field may be changed using their
field names.

No error messages display as a result of a segment inserted with an invalid
layout!

125

Cyborg Scripting Language Advanced Customization - Participant's Guide

INSERT- Report Example

Example 1: Inserting an L Segment

Initialize Pointer 8: INITIAL-SEGMENT-AREA.

Build Segment: MOVE "LXX®" TO W8-03-000.
MOVE WORK-DATE TO W8-06-003.
MOVE XNEWDATA-FIELD TO W8-30-009.

Position Pointer: FIND XLSEG-FIELD STARTING WITH W8-06-003.
IF FOUND RETURN.

Insert Segment: INSERT-PTR36-BATCH.

Test the Insert: IF SCREEN-ERROR EQUALS "F*

Record Write: MOVE "Y®" TO RECORD-UPDATED.

Example 2: Update an L Segment

Position Pointer FIND XLSEG-FIELD STARTING WITH W6-06-036.
IF FOUND
Update Segment MOVE CURRENT-DATE-CYYMDD TO XMY-DATE
MOVE "00" TO XMY-FIELD
Record Write: MOVE "Y® TO RECORD-UPDATED.
NOTES

126

Section 5: Employee Database Updating

Inserting a segment, continued

Report example
Inserting a segment(s) from a report program has the same INSERT- rules as
stated earlier.

INSERT-PTR36 BATCH

This verb inserts a new Pointer 36 Segment occurrence using the data in the first
71 positions of pointer 8. It is inserted in the Segment stack based on the Segment
pointer address. This verb also initializes the system field SCREEN-ERROR to
an ‘F’.

Record WRITE

When using a REPORT program to update segments, two system level fields
must be considered:

B The SCREEN-ERROR field is used to determine if the segment insert was
successful. ‘F’ = successful update, “Y’ = unsuccessful update.

B The RECORD-UPDATED field must be set to Y’ to rewrite the record to
FILEOZ2.

Example 1
This example demonstrates inserting a new segment:

B The segment is built in pointer 8 with the Segment type, segment code,
segment key and fields.

B The FIND positions the pointer where the segment is to be inserted using
segment key value. If the segment is not found the segment is inserted into the
record in memory, and will by updated to the file by the report process.

Example 2
This example demonstrates updating an existing segment:

B Once the Pointer is positioned, each non-key field may be changed using their
field names.

127

Cyborg Scripting Language Advanced Customization

- Participant’s Guide

INSERT- Query Example

Example 1: Insert/Update an H Segment Using UPDATE-EMPLOYEE

Update Record:
Selection:

Position Pointer:
Update Fields:

Build Segment:

Insert Segment:
Write Record:

Example 2: Insert/Update an

Read Record:
Selection:

Position Pointer:
Update Fields:

Build Segment:

Insert Segment:
Write Record:

UPDATE-EMPLOYEE.
FIND RESULTING-EMP-STATUS.
IF NOT FOUND
UNLOCK-EMPLOYEE RETURN.
IF RESULTING EMP-STATUS NOT EQUAL "O°
UNLOCK-EMPLOYEE RETURN.
FIND HED-AMOUNT-YTD STARTING WITH "008".
IF FOUND
MOVE "17" TO FREQUENCY-CODE
ELSE
INITIAL-H-SEGMENT
MOVE "H®" TO W8-01-000
MOVE "008" TO W8-03-001HED
MOVE "17" TO W8-02-004FREQ
@MOVE COMP VALUES TO TO-DATE FIELDS
INSERT-H-SEGMENT .

WRITE-EMPLOYEE.
H Segment Using READ-EMPLOYEE

READ-EMPLOYEE.
FIND RESULTING-EMP-STATUS.
IF NOT FOUND
RETURN.
IF RESULTING-EMP-STATUS NOT EQUAL "OF
RETURN.
FIND HED-AMOUNT-YTD STARTING WITH "008".
IF FOUND
MOVE "17" TO FREQUENCY-CODE.
ELSE
INITIAL-H-SEGMENT
MOVE "H®" TO W8-01-000
MOVE "008" TO W8-03-001HED
MOVE "17" TO W8-02-004FREQ
@MOVE COMP VALUES TO TO-DATE FIELDS
INSERT-H-SEGMENT .

WRITE-EMPLOYEE.

NOTES

128

Section 5: Employee Database Updating

Inserting a segment, continued

Query example
Inserting a segment from a Query program has the same INSERT- rules as stated
earlier.

UPDATE- verbs

When the UPDATE- verbs are used in a Query program, it assures that no other
access to the Employee Database record is possible. If the record is not to be
updated you must UNLOCK- the record.

UNLOCK- verbs
The UNLOCK- verbs are used to delete a ZL record from FILEO1 which allows
access to a record by other programs.

WRITE- verbs

The WRITE- verbs are used to update a Company, Employee or Tax record on
FILEO2. Issue the WRITE- verb only once for each master file record you are
updating, not for each segment that you insert.

Example 1

In this example, the UPDATE- verb is used to insert/update an H segment into
the employee record. If the employee is not to be updated the record must be
unlocked, otherwise the segment is either updated or inserted, and then written to
the file using the WRITE- verb.

Example 2

In this example, the READ- verb is used to insert/update an H segment into the
employee record. If the employee is not to be updated no unlocking is necessary,
the segment is either updated or inserted, and then written to the file using the
WRITE- verb.

129

Cyborg Scripting Language Advanced Customization - Participant's Guide

DELETE- Verbs

Verb Segment Type Segment data

DELETE-B-SEGMENT B Company Hours, Earnings & Deductions
DELETE-C-SEGMENT C Other Company Information
DELETE-D-SEGMENT D Batch Payroll Report Requests
DELETE-F-SEGMENT F Employee Name and Address
DELETE-G-SEGMENT G Employee Labor Splits
DELETE-H-SEGMENT H Employee Hours, Earnings & Deductions
DELETE-J-SEGMENT J Employee Taxes
DELETE-L-SEGMENT L Human Resource/User Employee Data
DELETE-P-SEGMENT P Employee Period End

Example: Delete continuation segments from the Spouse/Dependent Information

Delete This Entry?:
Position Ptr:

Position Ptr:

Delete Segment:

(10-SCR)
UPDATE-EMPLOYEE.

P300-VERIFY.
SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED GO TO
P999-PROMPTS.

PO00-DELETE-SEGMENT.
IF W8-01-395 NOT EQUAL "Z" EXIT.

FIND OTHER-ADDRESS-1 STARTING WITH W7-03-081.

IF FOUND PERFORM P910-DELETE.

FIND OTHER-ADDRESS-2 STARTING WITH W7-03-081.

IF NOT-FOUND EXIT.

P910-DELETE.
DELETE-L-SEGMENT. EXIT.

NOTES

130

Section 5: Employee Database Updating

Deleting a segment

Segment deletion
A segment can be deleted from an Employee Database record using one of the
DELETE- verbs listed in the table. These verbs may be used in:

B Form program
B Packaged report program
B Query program

DELETE rules
The rules for a DELETE- include:

W Position the pointer to the segment to be deleted using a FIND or SET verb
before the DELETE.

Form example

This example shows the deletion of the continuation segments for the
Spouse/Dependent Information form (10-SCR): P900 must be an After paragraph
on the last key field of the form:

B W8-01-395 is check for the value ‘Z’, which signifies that the user selected
Delete This Entry (ZDELETE) from the Action menu.

B The pointer is positioned to the continuation segments.

B The DELETE- verb is executed.

131

Cyborg Scripting Language Advanced Customization - Participant's Guide

DELETE- Report Example

Example: Delete a Segment using a Report Program

Position Ptr: FIND CTRL-3-CODE STARTING WITH "03".

IF NOT-FOUND RETURN.
Delete Segment DELETE-G-SEGMENT .

Insure Write: MOVE "Y*® TO RECORD-UPDATED.

DELETE- Query Example

Example 1: Delete a Segment Using Query Program and UPDATE- verb

Read Record: UPDATE-EMPLOYEE.

Position Pointer: FIND HED-AMOUNT-YTD STARTING WITH "008".
IF FOUND

Delete Segment: DELETE-H-SEGMENT

Write Record: WRITE-EMPLOYEE
ELSE

Unlock Record: UNLOCK-EMPLOYEE.

Example 2: Delete a Segment Using Query Program and READ- verb

Read Record: READ-EMPLOYEE.
Position Pointer: FIND HED-AMOUNT-YTD STARTING WITH *008".
IF FOUND
Delete Segment: DELETE-H-SEGMENT
Write Record: WRITE-EMPLOYEE.
NOTES

132

Section 5: Employee Database Updating

Deleting a segment, continued

Note:

Report example
When using a Report program to delete segments, the RECORD-UPDATED
field must be set to *Y’ to rewrite the record to FILEQ2.

Query program example 1

In the 1st example, the UPDATE- verb is used to retrieve the employee record. If
the employee is not to be updated, the record must be unlocked, otherwise delete
the segment and rewrite the record to FILEO2 using the WRITE-verb.

Query program example 2

In the 2nd example, the READ- verb is used to retrieve the employee record. If
the employee is not to be updated, the record must be unlocked, otherwise delete
the segment and rewrite the record to FILEO2 using the WRITE- verb.

Refer to Inserting a Segment, Query example for additional details of using
UPDATE- versus READ- verbs in a Query program.

133

Cyborg Scripting Language Advanced Customization - Participant's Guide

Batch Transaction Updating

Batch Layout Report for Scheduled Salary Review Data
Change mode regular display 43-SCR layout for United States

From To Field Name Length Comments Format/Edit
1 8 Program Literal 008 P CONTRL Constant
9 14 Task Number 006 TO0010 Constant
15 15 Filler 001 Space Constant
16 16 Comm-Cancel 001 Space Constant
17 22 Company Number 006 999999 Alphanumeric
23 28 Program Field 006 43-SCR Constant
29 29 Code-1 001 Space Constant
30 30 Code-2 001 Space Constant
31 40 Key Field 010 Alphanumeric
41 55 Additional Key 015 Alphanumeric
56 65 NEXT-REVIEW-DATE 010 MM-DD-YYYY
66 67 NEXT-REVIEW-TYPE 002 HR34
68 74 DISTRIBUTION-DATA 010 Pos 001-007 Alphanumeric
75 75 Continuation-Ind 001 * Constant
1 8 Program Literal 008 P CONTRL Constant
9 14 Task Number 006 T00020 Constant
15 15 Filler 001 Space Constant
16 18 DISTRIBUTION-DATA 010 Pos 008-010 Alphanumeric
19 28 DISTRIBUTION-DATE 010 MM-DD-YYYY
29 58 REVIEWER-NAME 030
59 68 DATE-RETURN-EXPECTED 010 MM-DD-YYYY
69 74 ACTUAL-RETURN-DATE 010 Pos 001-006 MM-DD-YYYY
75 75 Continuation-Ind 001 * Constant
1 8 Program Literal 008 P CONTRL Constant
9 14 Task Number 006 TO0030 Constant
15 15 Filler 001 Space Constant
16 19 ACTUAL-RETURN-DATE 010 Pos 007-010 MM-DD-YYYY

NOTES

134

Section 5: Employee Database Updating

Batch transaction updating

Form image transactions

A segment can be updated using a batch transaction in the format of the form
image. Form image transactions are processed by CBSVB in a batch mode. This
technique is used when:

B Converting to The Solution Series
B Interfacing to The Solution Series
B An audit trail is required

Form image layouts

The BATCHL program provides layouts for form images. This utility produces a
report (FILEO3) detailing the contents and layout of each form image transaction
that you may want to process. The example shown is for the 43—-SCR that creates
a ZQ Segment when processed.

Applying the transaction file
The technique of updating via form image transactions requires two steps:

1. Develop and execute the program that will write the form image transactions
to afile.

2. Execute CBSVB to read the output from Step 1 as FILEO4 input.

Your Step 1 program may be written using any language. If using CSL a Report
or Query (Batch) program can be written to extract the form image transactions.
Recall that both standard jobs include FILE1O0 as an output file.

135

Cyborg Scripting Language Advanced Customization - Participant's Guide

BATCHL Transaction Updating

Step 1: Example Program - Query

Read Record: READ-EMPLOYEE.

Selection: P100-SELECT.
@SELECTION LOGIC HERE.

Date P200-CALCULATE-DATES.

Calculation @DATE CALCULATIONS GO HERE.

Build P300-CREATE-SCREEN- IMAGES.

Form SPACE-EXTRACT-RECORD.

Images PRINT "P 43-SCRT00010 " CONTROL-1-2
"43-SCR " EMPLOYEE-NUMBER SPACE-OVER :15
WORK-DATE "SA" SPACE-OVER :10 *"* "

Write File: WRITE-FILE10.

Build PRINT "P 43-SCRT00011 * SPACE-OVER :10

Form SAVE-DATE SPACE-OVER :30 HOLD-DATE

Image: SPACE-OVER :08 SPACE-OVER:10.

Write File: WRITE-FILE10.

Step 2: Applying the Form Image Transactions

System Control
Repository
FILEO1

Employee
Database
FILEO2

Screen Image
Transactions
FILEO4 (FILE10)

J

A
Audit/Message
File
Screen Prints
FILEO3

.

NOTES

136

Section 5: Employee Database Updating

Batch transaction updating, continued

Example program
The contents of the FILE10 records follow the BATCHL guidelines for the 43—
SCR layout and conform to the FILEO4 control record fields, for example:

B Program Literal = P 43—-SCR (comments)

B Task Number = T0O0010 (comments)

B Key Field = EMPLOYEE-NUMBER

B NEXT-REVIEW-DATE = WORK-DATE (calculated)

SCREEN work area
The SCREEN work area is used to build the form image transaction. Recall these
verbs that affect the SCREEN work area:

B SPACE-EXTRACT-RECORD
B PRINT, SPACE-OVER :99, OUTPUT

WRITE-FILE10

Recall that this verb writes an 80-character record to FILE10. The record is
written from the SCREEN work area starting at :1601. After the write, the
SCREEN address is set back to :1601.

Recommended update technique
This method of updating the file has several advantages:

B The form program edits the transactions “as if’ you had entered the form
manually.

B The audit/message file (FILEO3) displays all errors.

B An audit record is created only when The Solution Series is running in a
Production mode (PRODUCTION-VERSION field = Y).

137

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section Summary

» Inserting a segment

» Deleting a segment

NOTES

138

Section 5: Employee Database Updating

Section summary

In this section, you learned several techniques for updating the Employee
Database. Complete the following questions to summarize the section:

Inserting a segment
B The verb used to initialize the Pointer 8 work area is

B Segment data to be inserted is laid out in order.
B Before executing an INSERT- verb, position the pointer with a
or verb.
B In a report program, the system field is used to verify
that INSERT- was successful.
B During a query update the use of the insures that the
record is locked.
B An employee record is unlocked by the verb.
Deleting a segment
W The verb is used to delete employee level tax
segments.
B Like the INSERT- verbs, when a DELETE- verb is used in a form entry
program, it must follow the logic and the
logic.
Updating with BATCHL transactions
B The program produces a report detailing a form image

transaction layout.

B When a form image requires more than one 80-character record, a
must be present in position 75 indicating continuation.

B Form image transaction updates are read in as input to

139

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 5 Exercise

Segment Layout for the ZQ Segment:

SEGMENT LAYOUT REPORT L SEGMENT

POSITIONS FIELD NAME LENGTH PIC Com
1 1 SEGMENT-TYPE 001 X(001) L
2 3 SEGMENT-CODE 002 X(002) ZQ
4 9 NEXT-REVIEW-DATE 006 9(006) K
10 11 NEXT-REVIEW-TYPE 002 X(002) HR34
12 41 REVIEWER-NAME 030 X(030)
37 41 FILLER 005 X(005)
42 51 DISTRIBUTION-DATA 010 X(010)
52 57 DISTRIBUTION-DATE 006 9(006)
58 63 DATE-RETURN-EXPECTED 006 9(006)
64 69 ACTUAL-RETURN-DATE 006 9(006)

NOTES

140

Section 5: Employee Database Updating

Section 5 exercise

Purpose
The purpose of this exercise is to practice inserting segments. You will update the
Employee Database with a Next Review Segment.

Directions

Write and execute a query program to insert a Scheduled Salary Review (43—
SCR, ZQ Segment) based on the current Performance Appraisal Results (49—
SCR, ZS segment) and the following data.

Selection

Segments should not be inserted for employees who already have a current review
segment or whose status (RESULTING-EMP-STATUS) is: Retired (9),
Deceased (5), or Terminated (1).

Field Data

NEXT-REVIEW-DATE (CYYMDD) One year anniversary of last review (RATING-DATE + 1
year = NEXT-REVIEW-DATE)

NEXT-REVIEW-TYPE SA- Salary Review Annual

DISTRIBUTION-DATE (YYMMDD) One month prior to the NEXT-REVIEW-DATE
DATE-RETURN-EXPECTED One week (7 days) from the NEXT-REVIEW-DATE
(CYYMDD)

Execute the QUERY program using the Query Key of ‘00’.

141

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

142

Section 6: Special Report Options

Section 6: Special Report Options

Table of Contents

Ty o o [NTex 1] o H OO PRSPPI 145
Special Print OPLION OVEIVIBWiciieiiiiecc sttt s e et e et e st e st e s teesteesaeesaesneesaeesaeenseensesneenneenseans 147
Percentage OF TOTAl FEPOIT ..ot b ettt e b b e b bt et esbeebe e b e e e e neeneeeas 149
Multiple employee format—3 across 1aDEIScoviiiiiii e 153
RepOrt SCNEAUIE PAFAMELETScviiiiseie s ettt ae et e e e es e e e s e teseeatesreeneereeneeneeneeneen 157
System Control RePOSITOrY FEPOITINGccviiieie ettt e e e s teesre e eesaeesaeesbeebeenseensesneenreans 163
LT o I S =] (o 1= TSRS 165

143

Cyborg Scripting Language Advanced Customization - Participant's Guide

Objectives

= Recall the special print
program features

» Develop techniques to handle
special print procedures

= Use report schedule parameters
for advanced techniques

NOTES

144

Section 6: Special Report Options

Introduction

Purpose
In this section advanced reporting techniques for special processing and printing
are covered.

Objectives
Upon completion of this section you will be able to:

B Recall the special print program features
B Develop techniques to handle special print procedures
B Use report schedule parameters for advanced techniques

145

Cyborg Scripting Language Advanced Customization - Participant's Guide

Special Print Option Paragraphs

Paragraph RTPRNT Process Timing
100 The report is starting
120 New Organization Number is starting
140 The header records are ready to print
160 The header records have been printed
180 Detail data with matching sort keys is ready
200 Total data is ready
220 A detail line is ready to print
240 A total line is ready to print
260 The report is done

NOTES

146

Section 6: Special Report Options

Special print option overview
Special print option paragraphs
As you will recall, the special print option paragraphs are performed at specific
times during the report print phase. Each paragraph is designed to allow access to

specific parts of the report output before and after the print line has been
formatted.

General rules associated with the special print options program include:

B All paragraph labels MUST be present, even if your special print option
program does not use them.

W Each paragraph must contain an EXIT that directs control back to RTPRNT.

B Additional paragraphs can be added to the program in the range of 100-999
(with the exception of the ones already used). Each new paragraph must
contain an EXIT, so control can be properly returned to the performing
paragraph.

S5M-RP program

The 5M-RP program is a delivered model that you may use as a prototype

whenever you need to create a special print options program. The 5M-RP

program contains all the required paragraphs, as well as comments providing
direction for each paragraph’s use.

147

Cyborg Scripting Language Advanced Customization - Participant's Guide

Percentage of Total Report

Report Extract:

DEFINE-REPORT TOTALS-ONLY.
@HEADING Statements
P100-START-SELECT.
SET-EMP-PTRS-TO-1ST. SET-CO-PTRS-TO-1ST.
FIND-ACTIVITY.
IF NOT FOUND RETURN.
IF RESULTING-EMP-STATUS NOT EQUAL "0" RETURN.
P200-INITIALIZATION.
MOVE :0 TO PERM-01-VO.
MOVE :0 TO PERM-02-VO.
IF SEX-CODE EQUALS *M*

MOVE :1 TO PERM-01-VO @Male Count
ELSE

MOVE :1 TO PERM-02-VO. @Female Count
MOVE :1 TO PERM-03-VO. @Male/Female Count
MOVE :0 TO PERM-04-V2. @Init Male Ratio
MOVE :0 TO PERM-05-V2. @Init Female Ratio
P300-SORT.

SPACE-EXTRACT-RECORD.

OUTPUT "1XAVG" FORMS/REPORT-CODE PRINT-GRAND-TOTAL
DOUBLE-SPACE-BEFORE CONTROL-1-2 DOUBLE-SPACE-BEFORE.
FIND CONTROL-3.

IF NOT FOUND SPACE-OVER :04

ELSE OUTPUT CONTROL-3-CODE BREAK-DEFAULT
SORT-LENGTH-25 EMPLOYEE-NUMBER.
P400-REPORT.

OUTPUT "0° PERM-01-VO PERM-02-VO PERM-03-VO
PERM-04-V2 PERM-05-V2.

WRITE-EXTRACT.

RETURN.
Report Print Positions:
SEQ FIELD ----- PRINT-----
NER. NAME FOS. LINE TOTAL
| 05| PERM-01-¥0 030 01
| 10] PERM-02-v@ oso) 01 |
| 15| PERM-03-vD 070] 01 i
1 20) PERM-04-v2 oso) 01 |
25| PERM-05-v2 110 01 i
Il EEEEEEE——.]

NOTES

148

Section 6: Special Report Options

Percentage of total report

Percent of total

Any report that requires a percentage of total must first have the total calculated
before it can calculate a percentage of total. In The Solution Series the percentage
of total calculation is performed in the special print options program, but also
requires some special set-up in the report extract program and report print
position records.

Example

The following example is for a report that gives a percentage of males and
females in each Organization Level 3. A grand total count and percentage is also
given.

Extract Program

The extract program is used to provide a count for each male, female and a total
of all employees. Paragraph P200 updates the PERM- fields with each
employee’s count and initialize two additional PERM- field used in the
calculation of the percentage of total. It is necessary to define all fields used in the
calculation here before coding the special print options program.

Print Position Record (RTEDIT)

The Print Position Record defines the fields in the extract. Remember it is
necessary to define all fields used in the calculation before coding the special
print options program.

Special Print Options Program
This program is used to calculate the percentage of total. The paragraphs used to
produce the labels are detailed on the following pages.

149

Cyborg Scripting Language Advanced Customization - Participant's Guide

Percentage of Total Report

Special Print Options Program:

P200-P. @ TOTAL DATA IS READY
CALCULATE 0:PERM-01-VO / 0:PERM-03-VO
CALCULATE 0:PERM-02-VO / 0:PERM-03-VO

O0:PERM-04-V2.
0:PERM-05-V2.

EXIT.
Percentage of Total Report:

CORPORATION 99 ACME MANUFACTURING Ratio of Men to Women REPT PERIOD FILE VERSION 00 PAGE 1
DIVISION 9999 PRODUCTION CTL 1-2 XAVG PERIOD TIME 15:01:10 DATE 11-07-2002
Control Nbr of Total Active

3 Code Nbr of Males Females Employee Male Ratio Female Ratio
*CONTROL- 3 -CODE 33 17 50 .66 .34
*CONTROL- 3 -CODE 01 13 5 18 .72 .28
*CONTROL- 3 -CODE 02 5 2 7 .71 .29
*CONTROL-3-CODE 03 2 2 .00 1.00
*CONTROL-1-2 999999 51 26 77 .66 .34
*REPORT CODE XAVG 51 26 77 .66 .34

NOTES

150

Section 6: Special Report Options

Percentage of total report, continued

Example
Special Print Program paragraphs
Paragraph P200 is used to calculate the percentage of total.

P200

At the time P200 is performed, the PERM values contain the total counts for
Male, Female, and all employees. Now we can calculate the percentage of total by
dividing the individual counts by the total count. The PERM counter is referenced
using the RECORD-TYPE:FIELD-NAME technique.

B Male count (PERM-01-V0) / employee count (PERM-03-V0) = % of Males
(PERM-04-V2).

B Female count (PERM-02-V0) / employee count (PERM-03-V0) = % of
Females (PERM-05-V2).

151

Cyborg Scripting Language Advanced Customization - Participant's Guide

Multiple Employee Format—a3 Across Labels

Report Extract:
DEFINE-REPORT NO-HEADINGS.

P1OO-INITIALIZE. @INITIALIZE COUNTERS HERE IF NECESSARY.
SPACE-EXTRACT-RECORD.
SET-EMP-PTRS-TO-1ST.

P200-SELECT. @RECORD SELECTION LOGIC GOES HERE.
P300-SORT.

PRINT "1XLAB®" FORMS/REPORT-CODE NO-PRINT-GRAND-TOTAL
SORT-LENGTH-51

CONTROL-1-2 EMPLOYEE-NAME EMPLOYEE-NUMBER.
P400-OUTPUT .

MOVE EMPLOYEE-NAME TO LAST-FIRST. CALL “FMLEDT".
MOVE PRINT-FIELD TO FIRST-LAST.

PRINT "0" FIRST-LAST ADDRESS CITY/STATE
ZIP-CODE.
WRITE-EXTRACT.

Report Print Positions:

SEQ FIELD -e-e- PRINT-----
NER NAME POS. LINE TOTAL
| 05| EMPLOYEE-NAME 0s0] 0l M
| 10] ADDRESS 080 02| M
115] CITY/STATE 080 03] N
1200 ZIP-CODE 112] 03] N
e 0 P
i —

152

Section 6: Special Report Options

Multiple employee format—3 across labels

Multiple employee format

Any report requiring multiple employee records to print on one line may be
accomplished by holding each employees data until all employees have been
accessed.

Example
The following example prints three across mailing labels.

Extract Program

Data for labels is extracted in the REPORT step. As usual, extract records are
written separately for each employee. Notice that the employee name will be
converted to First, Last order prior to being extracted.

Print Position Record (RTEDIT)

The print position record is used to provide a general layout for one label. Each
field is assigned to a different print line, this will be used in the special print
options program to determine the timing of when to hold and print the labels.

Special Print Options Program
This program is used to override detail processing. The paragraphs used to
produce the labels are detailed on the following pages.

153

Cyborg Scripting Language Advanced Customization - Participant's Guide

Multiple Employee Format—a3 Across Labels

Initialization

P100-P. @ REPORT IS STARTING
MOVE :1 TO PERM-01-VO

Process the Employee Address
Information

MOVE SPACES TO W8-60-700. MOVE SPACES TO W8-38-760. IF PERM-01-VO EQUALS :3
MOVE SPACES TO W8-60-830. MOVE SPACES TO W8-38-890. IF W8-02-158 EQUALS <01~
EXIT. MOVE W8-30-700 TO W8-30-000 @ NAME #1
MOVE W8-30-830 TO W8-30-039 @ NAME #2
P220-P. @ A DETAIL LINE IS READY TO PRINT - POINTER 8 MOVE <02” TO LINE-ADVANCE @ DOUBLE SPACE
IF W8-02-158 EQUALS 02~
MOVE W8-30-730 TO W8-30-000 @ ADDRES #1
Hold the 1st Employees Address MOVE W8-30-860 TO W8-30-039 @ ADDRESS #2
: MOVE “01° TO LINE-ADVANCE @ SINGLE SPACE
Information IF W8-02-158 EQUALS <03~
IF PERM-01-VO EQUALS :1 MOVE W8-38-760 TO W8-38-000 @ CITY/STATE ZIP #1
IF W8-02-158 EQUALS -01- MOVE W8-38-890 TO W8-38-039 @ CITY/STATE ZIP #2
MOVE W8-30-079 TO W8-30-700 @ NAME MOVE “01° TO LINE-ADVANCE @ SINGLE SPACE
MOVE "99° TO LINE-ADVANCE EXIT MOVE :1 TO PERM-01-VO
ELSE IF W8-02-158 EQUALS -02° MOVE SPACES TO W8-60-700 MOVE SPACES TO W8-38-760
MOVE W8-30-079 TO W8-30-730 @ ADDRESS MOVE SPACES TO W8-60-830 MOVE SPACES TO W8-38-890.
MOVE "99° TO LINE-ADVANCE EXIT EXIT.
ELSE IF W8-02-158 EQUALS -03"
MOVE W8-38-079 TO W8-38-760 @ CITY/STATE ZIP o
CALCULATE PERM-01-VO + :1 = PERM-01-VO
CALCULATE PERM-01-VO + il = "R Process any Remaining Employees
P260-P. @ THE REPORT IS DONE.

Hold the 2nd Employees Address

Information

IF PERM-01-VO EQUALS :2

IF W8-02-158 EQUALS <01*
MOVE W8-30-079 TO W8-30-830 @ NAME
MOVE "99" TO LINE-ADVANCE EXIT

IF W8-02-158 EQUALS <02*
MOVE W8-30-079 TO W8-30-860 @ ADDRESS
MOVE ®"99" TO LINE-ADVANCE EXIT

IF W8-02-158 EQUALS <03*
MOVE W8-38-079 TO W8-38-890 @ CITY/STATE ZIP
CALCULATE PERM-01-VO + :1 = PERM-01-VO
MOVE ®99" TO LINE-ADVANCE EXIT.

IF SPACES EQUAL W8-60-700 EXIT.

MOVE W8-30-700 TO W8-30-000. @ NAME #1

MOVE W8-30-830 TO W8-30-039. @ NAME #2

MOVE “02” TO LINE-ADVANCE. WRITE FILEO3.

MOVE W8-30-730 TO W8-30-000. @ ADDRESS #1

MOVE W8-30-860 TO W8-30-039. @ ADDRESS #2

MOVE “01” TO LINE-ADVANCE. WRITE FILEO3.

MOVE W8-38-760 TO W8-38-000. @ CITY/STATE ZIP #1
MOVE W8-38-890 TO W8-38-039. @ CITY/STATE ZIP #2
MOVE “01” TO LINE-ADVANCE. WRITE FILEO3.

EXIT.

3-Across Label Examples:

RICHARD ADAMS
4272 NORTH AVE
CHICAGO, 1IL

GEOFFERY ALSON KAR1 ANDERSEN
840 MARGRET STREET 692 S. 9TH AVENUE
60635 DES PLAINES, IL 60016 LA GRANGE, IL

60240

NOTES

154

Section 6: Special Report Options

Multiple employee format—3 across labels, continued

Example
Special Print Program paragraphs
Paragraphs P100, P220, and P260 are used to process the three across labels.

P100
The PERM counter and hold area in pointer 8 used to process each group of three
employees is initialized.

P200
Print control is based on groups of three employees:
B \W8-02-158 contains the Line Number value.

B [f the count equals one, each print line for the first employee is moved to a
hold area and the print line is suppressed.

B If the count equals two, each print line for the second employee is moved to a
hold area and the print line is suppressed.

B If the count equals three,

o The first employees hold area is restored to positions 1-39

e The second employees hold area is restored to positions 30-79

e The third employee prints in positions 80-110 as defined in the print
position record

o The PERM counter and hold area are initialized for the next group

P260
If less than three employees were processed in a group, one or two employee
names have not been printed.

B If hold area W8-30-700 is spaces, no detail exists.
B The hold areas are moved to the print areas and printed.

155

Cyborg Scripting Language Advanced Customization - Participant's Guide

Report Parameter Validation/Error Message

Parameter: IF FIRST-TIME-IND EQUALS 'F'
Validation: IF SPACES EQUALS W6-10-036
Error Message: INITIAL-PRINT-LINE

MOVE '***REJECT: X10RPT - Missing Report Schedule Parameters
TO W8-53-000
WRITE FILEO3
Bypass Employees: SET WORK TO :7
MOVE 'X' TO WORK RETURN.

FILEO3 output from REPORT:

CSSS 0005 ((999999(REPORT((CLASS () 12:10:01 10-15 USER
***REJECT: X1O0RPT - Missing Report Schedule Parameters
***REJECT: X10RPT - Missing Report Schedule Parameters
***REJECT: X1O0RPT - Missing Report Schedule Parameters

--——Complete---—-

NOTES

156

Section 6: Special Report Options

Report schedule parameters

Note:

When using report parameters, it is important to either provide defaults when no
parameters are entered or to stop the execution of the report and issue an error
message.

Example
The example above validates the report parameter, prints an error message, and
stops the execution of the report.

Parameter Validation

The logic for the parameter validation should be performed the first time the
report program is executed. The FIRST-TIME-INDICATOR field will contain an
‘F” when the report is being executed the first time. W6-36-036 contains the
report parameters.

Error Message
Error messages are written to FILEO3 using the direct file processing technique
explained in Section 2.

Bypass Employees
To avoid the processing of any additional employees through the report for the
current Control 1-2, move an “X’ to position 7 of the WORK pointer.

The Bypass Employees Report logic will only skip Employee Records, the
Company Record is still read for each Organization Number in the Organization
Number Schedule. Therefore an error message will be written for each
Organization Number in the Organization Number Schedule since the FIRST-
TIME-IND is set to ‘F’ for each Organization Number. This report should be run
alone in the Report Schedule since the Bypass Employees logic impacts the
reading of records regardless of the reports in the Schedule.

157

Cyborg Scripting Language Advanced Customization - Participant's Guide

Changing the Sort Sequence using Report
Parameters

Standard Sort: PRINT '1X01lR' FORMS/REPORT-CODE NO-PRINT-GRAND-TOTAL
SORT-LENGTH-51 CONTROL-1-2.
Variable Sort: IF W6-02-036PARMS EQUALS 'NM'

PRINT EMPLOYEE-NAME EMPLOYEE-NUMBER
ELSE IF W6-02-036 EQUALS 'SS'

PRINT SOCIAL-SECURITY-NBR EMPLOYEE-NUMBER SPACE-OVER :18
ELSE IF W6-02-036PARMS EQUALS 'C4'

PRINT CTRL-FOUR EMPLOYEE-NUMBER SPACE-OVER :26
ELSE PRINT EMPLOYEE-NUMBER SPACE-OVER: 30.

Sort Sequence Report Parameter Sort Key Length
EMPLOYEE-NAME and EMPLOYEE- NM Standard Sort = 11
NUMBER Name = 30
Number = 10
51
SOCIAL-SECURITY-NBR and SS Standard Sort = 11
EMPLOYEE-NUMBER Social Security Number = 12
Number = 10
Spaces = 18
51
CTRL-FOUR and C4 Standard Sort = 11
EMPLOYEE-NUMBER Control = 4
Number = 10
Spaces = 26
51
EMPLOYEE-NUMBER EN Standard Sort = 11
Number = 10
Spaces = 30
51
NOTES

158

Section 6: Special Report Options

Report schedule parameters, continued

Note:

Variable Sorts

A report may be requested which has several different sorts. However, a sort
structure is internal to the report's logic and cannot be changed without re-
compiling the program. An efficient way to solve this dilemma is to build the sort
variability into the report.

Example
The example above uses a report parameter to determine the sort sequence for a
given run.

Standard Sort
The standard sort defines the maximum sort length using the SORT-LENGTH-nn
verb.

Variable Sort

Each sort sequence is assigned a two character input code- NM, SS, C4, EN
respectively. When a sort combination falls short of 51 characters, the sort key for
the extract record is padded with blanks. For instance, the C4 sort option has only
25 characters, so 26 spaces are needed. The sort length must remain static.

This technique works only when the Variable Sort fields do not have Sort Options
such as DOUBLE-SPACE-BEFORE, NO-PRINT-SUBTOTAL, and so forth.
Recall that these options cause the report to reserve accumulators and line
control parameters that are specific to the field they immediately follow.

159

Cyborg Scripting Language Advanced Customization - Participant's Guide

Printing Report Schedule Parameters

Extract Program:
DEFINE-REPORT ALLOCATE-12.

Period IF W6-01-035 EQUALS 'F'
Record PRINT '1X1-R' CONTROL-1-2 SPACE-OVER:10 PRINT '.2063'

SCREEN-KEY '..' WRITE-EXTRACT.
Special Print Options Program:
Initialization: P100-P. @REPORT IS STARTING
MOVE 'Y' TO W6-01-100.
EXTIT.

P140-P. @HEADER RECORDS READY TO PRINT
IF W6-01-100 NOT EQUAL 'Y' EXIT.
Read Report MOVE '14' TO KEYO01l-SIZE.
Parameter Record MOVE 'PE' TO W7-02-010.
SET SCREEN TO :1435.@ HDR 2 POS 63
MOVE SCREEN TO W7-06-012.
MOVE 'X1-RPT' TO W7-06-018.
READ-UNIQUE FILEO1l.
Print Parameters IF STAT-KEY EQUAL '00'
MOVE W8-36-014 TO W8-36-800
INITIAL-PRINT-LINE
MOVE 'Report Schedule Parameters: ' TO W8-28-033
MOVE W8-36-800 TO W8-36-063
WRITE FILEO3
INITIAL-PRINT—LINE
MOVE "00" TO LINE—ADVANCE
WRITE FILEOS.
SET SCREEN TO :1435.
MOVE ' ' TO SCREEN.
MOVE SPACE TO W6-01-100.
EXIT.

Report Parameters Example:

Report Schedule Parameters: 200L23200A01

NOTES

160

Section 6: Special Report Options

Report schedule parameters, continued

Print report parameters
Report schedule parameters can be printed on the report by passing the Report
Schedule Name to the Special Print program via the extract record.

Example

Extract Program

A period record is used to pass the Report Schedule Name (SCREEN-KEY) to
the extract record. A dummy Organization Level 2 value is used on this extract
record.

Special Print Program
Paragraphs P100 and P140 are used to process the report parameters.

P100

The Pointer 6 field is initialized in P100. This field is used to indicate the first
pass through the Special Print Options logic so the report parameters can be
printed.

P140

The report header that contains the Report Schedule Name is available in this
paragraph.

B When the Pointer 6 field is *Y’ the paragraph is executed.

B The Report Schedule (PE) record is read from FILEO1 using the Schedule
Name in Header 2, print position 063, and report name.

B The 36 character Report Schedule Parameters are printed on the report.

B The SCREEN area is then reset to the area where the Report Schedule name
appears, and is initialized to blanks.

161

Cyborg Scripting Language Advanced Customization - Participant's Guide

System Control Repository Reports

Extract Program: Build the Extract Record:
DEFINE-REPORT NO-PE-DATES ALLOCATE-20. P200-SORT .
@HEADER Statements MOVE-TABLE-RECORD.

: : SPACE-EXTRACT-RECORD.
OUTPUT "1XSVR®" FORMS/REPORT-CODE
NO-PRINT-GRAND-TOTAL

Bypass Employees: SORT-LENGTH-25 CONTROL-1-2 XSUPV-CTRL-NBR

P100-START. XSUPV-LOCATION XSUPV-EFFECTIVE.

IF W6-06-047 EQUAL * . P300-REPORT .

MOVE CONTROL-1-2 TO W6-06-047 PRINT *0" XSUPV-CTRL-NBR XSUPV-LOCATION

MOVE "Y* TO W6-01-035 XSUPV-EFFECTIVE XSUPV-NAME-CODE XSUPV-NAME

SET WORK TO :7 MOVE *X* TO WORK XSUPV-WORK-PHONE XSUPV-WORK-EXT SUPV-HOME-PHONE
ELSE XSUPV-MAIL-DIST.

IF CONTROL-1-2 NOT EQUAL W6-06-047 WRITE-EXTRACT -

SET WORK TO :7 MOVE "X® TO WORK RETURN.
Read Subsequent Records:

Read the 1st Record: PA00—READ—NEXT .
INITIAL-TABLE-AREA. UNLOCK FILEO1. MOVE TABLE-C01-40 TO W7-24-010.
MOVE "02" TO KEYO1l-SIZE. MOVE ®24* TO W7-00-008.
MOVE *X1® TO W7-02-010. @KEYO1-AREA READ-UNIQUE FILEO1. READ FILEO1.
READ-UNIQUE FILEO1. IF STAT-KEY EQUAL TO "00" AND W8-02-000 EQUALS ="X1*
IF STAT-KEY NOT EQUAL *00" RETURN. GO TO P200-SORT.
RETURN.

Supervisor Table Report Example:

CORPORATION 99 ACME MANUFACTURING Supervisor Table Report REPT FILE VERSION 00 PAGE 1
DIVISION 9999 PRODUCTION CTL 1-2 XSVR TIME 13:31 DATE 03-19-2002
ctrl Location-----—-———-——————- Effective --—--—--——- Supervisor ---------- Work Work Home Mail
Nbr Code Name Date Code Name Phone Ext. Phone Stop
9999 01 Midwest 01-01-1980 JOHN John Johnson 3124541865 0045 3125557898 02A-331122
9999 3030 Region 3030 01-01-1990 BILL William Haze 3124541865 0045 3125557898 02A-33
9999 3333 Region 3333 01-01-1992 JACK Jack Smith 3124541865 0045 3125557898 02A 3311

NOTES

162

Section 6: Special Report Options

System Control Repository reporting

FILEOL reports
It is possible to use the report process to produce reports for System Control
Repository records. This technique requires the report extract program to:

B Stop the automatic read of FILEO2 records performed by the REPORT
process.

B Include direct file processing to read the System Control Repository records.

Example
The following example prints a report for the supervisor table example created
previously in Section 4.

Bypass employees

To stop the processing of employee records for the current Organization Number,
an ‘X’ is moved to position 7 of WORK. Since this logic skips to the next
Company in the Report Schedule, the Company Record is still read for each
Organization Number in the Organization Number Schedule. Therefore, the
Allocate area is being used to store the 1st Organization Number, and then tested
to see if the report logic should be executed. The report extract logic is only
executed for the 1st Organization Number.

Read the 1st Record
FILEOL is read using the direct file processing techniques discussed in Section 2.

Build the Extract Record
Once the table record is move to pointer 40 (MOVE-TABLE-RECORD), the
extract record is created.

Read Subsequent Records

Subsequent reads to FILEO1 must be randomly read (READ-UNIQUE) for the
current table record, and then sequentially read (READ) for the next table record.
TABLE-C01-40 contains the current table key.

163

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 6 Exercise

NOTES

164

Section 6: Special Report Options

Section 6 exercise

Directions
Take 20 minutes to complete the following program:

1. Write a report to display the Pay Period Days Table. Refer to Section 4,
exercise 1 for the specific field names you used to defining the table layout.

Record Identifier* X

Table Identifier* Two

Table Pay Frequency* Alphanumeric, one position, Option
List=PP29

Table Period End Date* Century Date, six positions

Table Workdays by Period Numeric, three positions

Table Holidays by Period Numeric, three positions

165

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

166

Appendix A: Exercise Answers

Appendix A: Exercise Answers

Table of Contents
Yot (o] 7A=Y (o3 [T TR 168
SEBCHION 2 EXEICISE 2...veitieteeieeeie et e eteeite e bt et e st e steesteeebeeteeabesateebseabeeabeeabeesbesbsesbaesbeebeessesneesbeeabeebeentesasessseareenreans 169
Lo o] A= D] (ol [T OO U RSP PRPURTOTN 171
SEBCLION 4 EXEICISE L. urieieieiitee ettt ettt e et e ettt e e et e e ettt e ebeeeebe e e ebeeeabeeebeeaabesabeesabessabeesabeessbeeaateesteeebeeenbeeenseeas 174
Yot (o] IR A=) (o3 [T O 178
SBCTION 5 BXBICISE. ...iviiiteieteete et et e et e st e e cte et e ettt eteesbe e ebe e beebeeaseebseebeebeesbeesbesbeesaaesbeesbeesbeeneesbeeabeenbeentesasesbseabeenrenns 187
Lo o] A= D] (ol [T T PSS U PR OUPROURRTOTN 189

167

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 2 exercise 1

1. Read the System Control Repository (FILEO1) Option List Records with a key

of ‘C SC04’.

2. Display the Description and Value of each option in the Option List.

SECURITY * ". @ Section 2 Exercise 1

@LAST MODIFIED ON: 11-15-94 BY: XXXX AUTHOR: XXXX

P100-START.
MOVE "C SC04" TO W7-06-010. @KEYO1-AREA
MOVE "06" TO KEYO1l-SIZE.
READ-UNIQUE FILEO1.
IF STAT-KEY NOT EQUAL "00*
PRINT-MESSAGE "SC002" RETURN.
P200-L0O0P.
MOVE W8-80-000 TO W8-80-800.
INITIAL-PRINT-LINE.
MOVE W8-14-807 TO W8-14-000. @Code Set Value
MOVE W8-20-823 TO W8-20-015. @Code Set Description
PRINT W8-79-000. NEXT-LINE.
READ FILEO1.
IF STAT-KEY NOT EQUAL 00" OR
W8-06-000 NOT EQUAL TO "C SC04*
PRINT-MESSAGE "SC002" RETURN.
GO TO P200-LO0OP.

168

Appendix A: Exercise Answers

Section 2 exercise 2

1. Create a program to add the following report to a Report Schedule named
‘CLASS’: 1A-RPT, 1G-RPT, and 1R-RPT. For every write operation, check
the status key and print a message (one per line) that contains ‘STAT KEY: *
and the STAT-KEY value.

00000 SECURITY * ". @ Section 2 Exercise 2
00001 @LAST MODIFIED ON: BY: AUTHOR: USER
00100 P100-CREATE-HEADER.

00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

INITIAL-80.

MOVE "PECLASS " TO W8-08-000.

MOVE "HCLASS EXERCISE REPORT GROUP®" TO W8-00-023.
WRITE FILEO1. @ HEADER RECORD
PRINT "STAT KEY: " STAT-KEY. NEXT-LINE.

P200-ADD-REPORTS.

MOVE "1A-RPT®" TO W8-06-800.
PERFORM P300-WRITE.

MOVE "1G-RPT" TO W8-06-800.
PERFORM P300-WRITE.

MOVE "1R-RPT" TO W8-06-800.
PERFORM P300-WRITE.

RETURN.

P300-WRITE.

INITIAL-80.

SET PRINT-FIELD TO FIRST.

MOVE "PECLASS * TO PRINT-FIELD.
MOVE W8-06-800 TO PRINT-FIELD.
WRITE FILEO1.

PRINT *"STAT KEY: " STAT-KEY.
NEXT-LINE.

EXIT.

169

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 2 exercise 2, continued

2. Create another program to delete the Report Schedule named ‘CLASS’ from
the System Control Repository.

SECURITY * ". @ Section 2 Exercise 1 XX
@LAST MODIFIED ON: 11-15-94 BY: XXXX AUTHOR: XXXX
P100-START.

MOVE "08" TO KEYO1-SIZE.
MOVE "PECLASS " TO W7-08-010. @Report Schedule Record.
READ-UNIQUE FILEO1.
IF STAT-KEY NOT EQUAL ®00*
PRINT-MESSAGE "SC056" @Purge not performed
UNLOCK FILEO1 RETURN
ELSE
DELETE-GLOBAL FILEO1.
RETURN.

170

Appendix A: Exercise Answers

Section 3 exercise

1. Modify Option List PP29 by adding logic to calculate an annualized salary
for the employees regular pay (HED 001). The annualization calculation is
as follows:

SALARY * Annualization Factor (PERM-02-V2) = Annual Salary (PERM-01-V2)

Code

APARDWWWWNNNNRPRERRE

Frequency Annualization Factor
1 weekly 52.00
2 bi-weekly 26.00
3 semi-monthly 24.00
4 monthly 12.00
Seq Codeset Calculation - English Language Source

M

Mo1
M02
MO3
Mo4
MO5
MO6

MO1
MO3
MO5

MO1
MO3
MO5

MO1
MO3
MO5

MO1
MO3
MO5

Pay Frequency
PAY-FREQUENCY-CODE
MOVE :0 TO PERM-01-V2. MOVE :0 TO PERM-02-V2.
GO TO P299-EXIT.
P200-CALCULATE.

IF SALARY NOT EQUAL :0

CALCULATE SALARY * PERM-02-V2 = PERM-01-V2. EXIT.
P299-EXIT.
Weekly
MOVE :52.00 TO PERM-02-V2.
PERFORM P200-CALCULATE.
CODE-SET-DONE -
Bi Weekly
MOVE :26.00 TO PERM-02-V2.
PERFORM P200-CALCULATE.
CODE-SET-DONE -
Semi Monthly
MOVE :24_.00 TO PERM-02-V2.
PERFORM P200-CALCULATE.
CODE-SET-DONE -
Monthly
MOVE :12.00 TO PERM-02-V2.
PERFORM P200-CALCULATE.
CODE-SET-DONE .

171

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 3 exercise, continued
2. Modify the H1-SCR program to display the result of the calculation.

4 Form Builder - XH1SCR.SAT [[a]x] I

File Form Mode Add Control

(2] 1] [=o] [E8] (2] [©] [T [A] (2]

Rate Or 3alar RERRENENANARENNRESEANNNRRRRRRS

HED [881 Only]> XXX
Pay Rate: XXNXXXXX
Hormal Hours: XXXXXXXX
Salary: KXXXXXNXXX

Annualized Salary: XEXNNEXNE

| Employee Earnings And Deductions
| Employee Tax Record Haintenance
| Direct Deposit Information

Section 1

172

Appendix A: Exercise Answers

Section 3 exercise, continued

Display Box I

Field Name:IPERM—B1—U2

Label: Innnualized salary:

Exit Routines When Shown Label Location
" No Label
Before: (488 & Always 0 Labe
¢ Character Mode " Left, Left Justified
After: I . »
" Graphical Mode & Left, Right Justified
" Above, Left Justified
Section: |1_ " Above, Centered on 2 Lines
elete | Cancel |

P100-START-SCREEN.
KEY-REQUIRED. NO-ZDELETE-ALLOWED.
UPDATE-EMPLOYEE. NEW-SCREEN-STYLE.
SCREEN-SECTION *0".
IF SCREEN-CODE1 EQUALS “E*
MOVE " * TO SCREEN-CODE1l
ELSE IF SCREEN-CODE1 EQUALS *"1°
MOVE "E* TO W7-01-252
MOVE "E* TO W7-01-298
MOVE "S* TO W7-01-301
RETURN.
P200-ENTRY-SCREEN.
SCREEN-SECTION *"1°7.

P300-VERIFY.

SET-FOR-MESSAGES .

IF ERRORS-EXIST RETURN.

IF RECORD-NOT-UPDATED GO TO P999-PROMPT.
IF HED-NUMBER NOT EQUAL "001" PRINT-REJECT "PROO7*
ELSE MOVE "H® TO KEY-FIELD-4.

RETURN.
P400-CALC-CODE-SET.

CALC-CODE-SET "PP29 *.
EXIT.
P990-INQUIRY-SCREEN.

RETURN.
P999-PROMPT .

SCREEN-SECTION "9°".

MOVE "Y®" TO AUTO-KEY-SWITCH.

173

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 exercise 1

1 1 2 2 3 3 4 4 5 5

0....5....0....5....0....5....0....5....0....5....0....5....

X29999XCYYMDD 999999

Positions Definition
Table Record Key

X 0 Record Identifier

2 1 Table Identifier
9999 2-5 Control Number

X 6 Pay Frequency Code
CYYMDD 7-13 Period End Date
(blank) 14-23 Unused key area
Table Data

999 24-26 Period Workdays
999 27-29 Period Holidays

174

Appendix A: Exercise Answers

Section 4 exercise 1, continued

Mumeric 0 Decimals

Alphanurneric

_ |
Payroll/HRMS

k289

175

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 exercise 1, continued
[Field Maintenance And fct]
]
Aphorumeric |

Codeset Description l_
44

01,
00|

I
I
= i
100410
]

1
X2-MD-PERIOD-ED-DT
Century/Complement D |—

Payroniuens o
o
1

176

Appendix A: Exercise Answers

Section 4 exercise 1, continued
[Field Maintenance And fct]

|
X2 -ND-PER1OD-WK-DY

Murneric 0 Decimals l_

Payroll/HRMS ~|
&
1

_______ &
1

112564

|
%2-ND-PERIOD-HL-DY
Murneric 0 Decimals l_

______ &
|
_| |

Foaiiys o]
S

____§

112564

177

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 exercise 2

1. Use Form Builder to create the form’s appearance using the fields defined in
Section 4 Exercise 1. Do not forget to Perform paragraph 850 after the date

field.
CfomBade XPSCRSAT __ WEH]|

File Form Mode Add Control

(2] a1 [oo] (B8] (5] [@)] (7] [A] (2]

Period Days Table Control Humber> REXX

Pay Frequency> [xxxxxxxXXXXXNNNRAXNE ~|

Period End Date> XXXXXXXNXX

Days in Period

Holidays: XXXX
Workdays: XXXX

81 5 Section 5
Display Box I
Field Name: IX2—ND—CI]NTRI]L—NUM
Label: I[:ontrol Number>
Exit Routines When Shown —Label Location
el
Eisftare & Always Mo Label
¢ Character Mode Left, Left Justified
After: I - fer
' Graphical Mode % Left, Right Justified
" Above, Left Justified
Section: |5_ Above, Centered on 2 Lines
[Velete | Cancel |

178

Appendix A: Exercise Answers

Section 4 exercise 2

. continued

List Box

Exit Routines

Before: l_
After: I_

Field Name: Ix2—ND—PRV—FREI]—[:D

Label: IPay Frequency

Section: |1_

YWhen Shown

& Always

" Character Mode
 Graphical Mode

[~ Big Option List
Label Location
" No Label
" Left, Left Justified
& Left, Right Justified
" Above, Left Justified

" Above, Centered on 2 Lines

Delete |

Cancel |

Text Box

Before:

After:

Field Name: IXZ—ND—PERIDD—ED—DT

Label: |Periud End Date>

Section:|1_

Label Location
" No Label
 Left, Left Justified

Exit Routines
& Left, Right Justified

I Above, Left Justified
I85‘:1 " Above, Centered on 2 Lines

[~ Spin Button?

~¥hen Shown
& Always

¢ Character Mode
" Graphical Mode

~Current Yalue

¢ Don't Show
& Show Inside Box
¢~ Show Below Box

Delete |

Cancel |

179

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 4 exercise 2, continued

Text Box

Field Name: I}{Z—NII‘—PERII]D—HL—D%l

Label: IHolidays:

Sectiun:|1_
Label Location

¢ Mo Label
 Left, Left Justified

Exit Routines

[~ Spin Button?

~¥hen Shown
 Always

" Character Mode
" Graphical Mode

~Current Yalue

Bef l_ & Left, Right Justified Don't Show
efore:
 Above, Left Justified & Show Inside Box
After: I ¢ Above, Centered on 2 Lines ¢ Show Below Box

Delete | Cancel |

Text Box
Field Name: I?CZ—NII'—PERIl]D—l.\!I(—D\rl " Spin Button?
Label: |w0rkdays: ~When Shown
& Always
Section:|1_ " Character Mode

Label Location

 Graphical Mode
¢ Mo Label
 Left, Left Justified ~ Current Value
Exit Routines PR e e D 0
* Le ight Justifie on't Show
Before: I
" Above, Left Justified & Show Inside Box
After: I Above, Centered on 2 Lines " Show Below Box

Delete | Cancel |

180

Appendix A: Exercise Answers

Section 4 exercise 2, continued

Group I
Type——— | pBoxiInterior————
& Group box = Transparent
¢ Recessed Box 1 Red 1 Purple
' Raised Box 1 Green = Yellow
 Tab Group = Blue &1t Blue

Optional Group box Label
IDays in Period Section: |1_

Delete | Cancel |

SECURITY " "_. @ Pay Period Days Table EXX
@LAST MODIFIED ON: BY: AUTHOR:
P100-START-SCREEN.
ZDELETE-SECURITY.
PERFORM P840-INITIAL-TABLE. RESET-TABLE-HELP.
NEW-SCREEN-STYLE. MOVE "N * TO W8-02-750.
SCREEN-SECTION "0-.
IF TABLE-SELECTION SET-SELECTION-MODE.
IF NOT INQUIRY-MODE AND NOT SELECTION-MODE
GO TO P200-ENTRY-SCREEN.
P110-INQUIRY-SCREEN.
IF TABLE-INQUIRY-UP
OR TABLE-INQUIRY-DOWN
IF TABLE-INQUIRY-PASS
AND NOT SELECTION-MODE
SET-TABLE-1INQ-UPDN
GO TO P200-ENTRY-SCREEN.
SET P-E-PLACE TO :14.
SET WORK TO :45.
IF SELECTION-MODE
IF W7-01-252 EQUAL *" * GO TO P170-RESET-RETURN
ELSE GO TO P130-SEARCH-WORK.
IF W7-01-253 EQUAL "F" MOVE " " TO W7-01-253
MOVE * * TO SCREEN-CODE2 MOVE SPACES TO W7-24-254
ELSE IF W6-02-200 EQUAL "X2*
AND TABLE-SCREEN-ENTRY
MOVE W6-07-206 TO W7-07-254.
MOVE SPACES TO W6-24-200.
PERFORM P160-READ-CONTROL-NBR.
MOVE "E* TO W7-01-298.
MOVE "Q" TO W7-01-302.
MOVE "00" TO SCREEN-LINE.
IF SPACES EQUAL W7-11-254
MOVE "06X2" TO W7-04-008
ELSE MOVE "13X2" TO W7-04-008
MOVE W7-07-254 TO W7-07-016
MOVE SPACES TO W7-25-254.
READ-UNIQUE FILEO1.
IF STAT-KEY NOT GREATER THAN "O1°
AND W8-06-000 EQUAL W7-06-010
PERFORM P150-INQUIRY-SCREEN
ELSE GO TO P170-RESET-RETURN.
P120-READ-NEXT.
READ FILEO1l.

181

Cyborg Scripting Language Advanced Customization - Participant's Guide

IF STAT-KEY NOT GREATER THAN *0O1*
AND W8-06-000 EQUAL W7-06-010
PERFORM P150-1INQUIRY-SCREEN
IF SCREEN-LINE NOT EQUAL :17

GO TO P120-READ-NEXT.

MOVE "** TO WORK.

SET-TABLE-SELECT. RETURN.

P130-SEARCH-WORK.

MOVE WORK TO W8-14-800.

IF W8-01-811 EQUAL "@*

MOVE "K* TO W7-01-252

PERFORM P140-MOVE-KEY

SET-TABLE-SCREEN
ELSE IF WORK NOT EQUAL =**

GO TO P130-SEARCH-WORK
ELSE MOVE "1° TO W7-01-252
IF SPACES EQUAL W7-20-254
PERFORM P140-MOVE-KEY.
RESET-TABLE-SELECT. RETURN.
P140-MOVE-KEY .

MOVE W8-01-800 TO W7-01-254.

MOVE W8-02-801 TO SAVE-MONTH.

MOVE W8-02-804 TO SAVE-DAY.

MOVE W8-04-807 TO SAVE-DATE-CENTYEAR.

MOVE CENTURY-SAVE-DATE TO WORK-DATE.

MOVE WORK-DATE TO W7-06-255.

EXIT.

P150-INQUIRY-SCREEN.

MOVE-TABLE-RECORD.

MOVE TABLE-KEY TO W6-24-300.

MOVE W7-40-176 TO WORK.

SCREEN-SECTION "8".

CALCULATE SCREEN-LINE + :1 = SCREEN-LINE.

MOVE W6-24-300 TO W7-24-010. MOVE "24" TO W7-02-008.

READ-UNIQUE FILEO1. EXIT.

P160-READ-CONTROL-NBR.

READ-CONTROL-NUMBER -

MOVE JOB-CODES TO W7-04-012.

EXIT.

P170-RESET-RETURN.

SET-INQUIRY-RETURN. RETURN.

P200-ENTRY-SCREEN.
IF GUI-IN-USE SET-SCREEN-TO-ENTRY
SET-SELECT-ONLY.

CHECK-TABLE-INQUIRY.

IF W7-01-253 EQUAL "F*

PERFORM P160-READ-CONTROL-NBR
PERFORM P810-READ-UNIQUE

MOVE * * TO W7-01-253

MOVE *"S* TO W7-01-301

GO TO P525-MOVE-AND-RETURN.

IF W7-01-302 EQUAL "Q*

AND SPACES NOT EQUAL W6-24-200
AND W6-02-200 EQUAL *"X2*
AND SPACES EQUAL W7-24-254
AND TABLE-SCREEN-ENTRY
AND NOT EMPTY-TABLE-SCREEN
MOVE W6-07-206 TO W7-07-254.
CLEAR-HOLD-TABLE-KEY .
IF NOT TABLE-SCREEN-ENTRY
MOVE SPACES TO W7-25-254.

182

Appendix A: Exercise Answers

IF SPACES NOT EQUAL W7-07-254
AND W7-07-264 NOT EQUAL "ZDELETE"
MOVE SPACES TO KEYO1-AREA
MOVE W7-07-254 TO W7-07-016
MOVE SPACES TO W7-24-254
PERFORM P810-READ-UNIQUE
ELSE
IF W7-01-302 EQUAL "Q"
PERFORM P160-READ-CONTROL-NBR
MOVE "F* TO W7-01-253
PERFORM P810-READ-UNIQUE
MOVE " * TO W7-01-253
IF HOLD-STAT-KEY EQUAL "00"
MOVE TABLE-KEY TO W6-24-200
ELSE SET-EMPTY-TABLE-SCR.
SET-TABLE-SCREEN.
SCREEN-SECTION "1".
SCREEN-SECTION "2*.
PERFORM P570-SECTION-5.
IF RECORD-NOT-UPDATED
AND W6-01-100 EQUAL "Q"
MOVE *Q® TO RECORD-UPDATED.
IF W7-07-264 EQUAL "ZDELETE"
AND W8-01-750 EQUAL "U"
MOVE "Y" TO RECORD-UPDATED.
P300-VERIFY.
NEXT-LINE.
PERFORM P560-SET-MESSAGES.
IF ERRORS-EXIST MOVE "E" TO W7-01-301 RETURN.
IF W6-01-199 EQUAL "S”
MOVE *S* TO W7-01-301
GO TO P525-MOVE-AND-RETURN.

IF W8-01-751 NOT EQUAL SPACES GO TO P400-EDIT-ROUTINES.

IF RECORD-UPDATED EQUAL *Q*
IF W7-07-264 EQUAL "ZDELETE"
GO TO P400-EDIT-ROUTINES
ELSE RETURN.
IF RECORD-NOT-UPDATED

IF W7-01-278 NOT EQUAL SPACES CALL "TBLMSG" RETURN

ELSE IF W7-01-253 EQUAL "U" OR "B*
AND W6-02-200 EQUAL ="X2*
MOVE W6-24-200 TO KEYO1l-AREA
PERFORM P810-READ-UNIQUE
RETURN
ELSE RETURN.
IF WHAT-1F-MODE
GO TO P500-ERROR-CHECK.
P400-EDIT-ROUTINES.
IF W7-07-264 EQUAL "ZDELETE"®
IF W8-01-750 EQUAL *"U" GO TO P500-ERROR-CHECK
ELSE PRINT-REJECT "SC526".
IF W8-01-751 NOT EQUAL SPACES
IF W8-01-751 EQUAL "N* PRINT-REJECT "HROO7"
GO TO P500-ERROR-CHECK
ELSE
IF W8-01-751 EQUALS "S" PRINT-REJECT "HRO12*
GO TO P500-ERROR-CHECK.
P500-ERROR-CHECK.
IF ERRORS-EXIST
OR WARNINGS-EXIST MOVE "E" TO W7-01-301 RETURN.
IF WHAT-1F-MODE

183

Cyborg Scripting Language Advanced Customization - Participant's Guide

RESET-RECORD-UPDATE
MOVE W6-24-200 TO TABLE-KEY
GO TO P525-MOVE-AND-RETURN.
IF W8-01-750 EQUAL "U" GO TO P520-UPDATE.
P510-ADD-RECORD.
MOVE-TABLE-TO-PRINT.
WRITE FILEO1.
IF STAT-KEY NOT EQUAL "00" PRINT-REJECT "SCO1w*
GO TO P500-ERROR-CHECK.
MOVE "A" TO W7-01-278. GO TO P524-SET-RECORD-LOCKED.
P520-UPDATE-RECORD.
IF W7-07-264 EQUAL "ZDELETE" GO TO P530-DELETE.
MOVE-TABLE-TO-PRINT. REWRITE FILEO1.
IF STAT-KEY NOT EQUAL "00" PRINT-REJECT "SCO1T"
GO TO P500-ERROR-CHECK.
MOVE *"U®" TO W7-01-278.
P524-SET-RECORD-LOCKED.
MOVE 40" TO RECORD-LOCKED.
P525-MOVE-AND-RETURN.
MOVE X2-ND-PAY-FREQ-CD TO W7-07-254. RETURN.
P530-DELETE.
MOVE TABLE-KEY TO W7-24-010.
MOVE "13" TO KEYO1l-SIZE.
DELETE-GLOBAL FILEO1.
IF STAT-KEY EQUAL "50" OR "53*°
PRINT-REJECT *SC01G" GO TO P500-ERROR-CHECK.
MOVE *"Z* TO W7-01-278.
MOVE "40" TO RECORD-LOCKED.
MOVE SPACES TO W6-24-200.
MOVE SPACES TO W7-14-264.
RETURN.
P560-SET-MESSAGES.
SET-FOR-MESSAGES. EXIT.
P570-SECTION-5.
SET SCREEN TO SAVE.
SCREEN-SECTION *5°%.
SET SCREEN TO SAVE.
EXIT.
P800-FIND-RECORD.
MOVE SPACES TO W7-22-012.
MOVE CONTROL-NUMBER TO W7-22-012.
P810-READ-UNIQUE.
IF W7-01-253 NOT EQUAL "F*
PERFORM P830-FIND-AX-RECORD
MOVE JOB-CODES TO CONTROL-NUMBER
MOVE JOB-CODES TO W7-04-012
MOVE "13X2" TO W7-04-008
ELSE
MOVE "06X2" TO W7-04-008.
READ-UNIQUE FILEO1.
MOVE STAT-KEY TO HOLD-STAT-KEY.
MOVE " * TO W6-01-199.
IF SPACES NOT EQUAL W6-24-200
IF W6-24-200 NOT EQUAL KEYO1-AREA
AND NOT WHAT-1F-MODE
MOVE "S* TO W6-01-199
ELSE NEXT SENTENCE
ELSE MOVE KEYO1-AREA TO W6-24-200.
IF STAT-KEY EQUAL "00" MOVE "U®" TO W8-01-750
GO TO P820-MOVE-RECORD
ELSE IF RECORD-UPDATED EQUAL Q" MOVE "A" TO W8-01-750

184

Appendix A: Exercise Answers

MOVE "X2®" TO TABLE-C01-02
ELSE IF W7-02-008 EQUAL "06" EXIT
ELSE MOVE KEYO1-AREA TO TABLE-KEY EXIT.
IF W6-01-199 EQUAL *"S*
AND W8-01-750 EQUAL A"
MOVE * * TO W6-01-199
IF W8-01-751 NOT EQUAL "N" AND "S-
MOVE KEYO1-AREA TO W6-24-200. EXIT.
P820-MOVE-RECORD.
IF W7-01-253 EQUALS “F*
MOVE W8-24-000 TO W7-24-010.
MOVE-TABLE-RECORD.
PERFORM P860-SET-BUTTONS.
EXIT.
P830-FIND-AX-RECORD.
MOVE KEYO1-AREA TO W8-24-110.
MOVE W8-06-117 TO CROSS-REFERENCE-DATE.
READ-TZAX-TABLE.
IF STAT-KEY GREATER THAN "01" MOVE *"N* TO W8-01-751
PERFORM P835-INITIAL-TABLE-KEY
ELSE IF SPACES EQUAL JOB-CODES
MOVE *"S* TO W8-01-751
PERFORM P835-INITIAL-TABLE-KEY.
MOVE W8-24-110 TO KEYO1-AREA.
EXIT.
P835-INITIAL-TABLE-KEY .
MOVE SPACES TO W6-24-200.
IF GUI-IN-USE SET-SELECT-ONLY.
P840-INITIAL-TABLE.
INITIAL-TABLE-AREA.
EXIT.
P850-CHECK-KEY-FLDS.
MOVE " * TO W6-01-100.
IF RECORD-UPDATED NOT EQUAL SPACE
AND NOT ERRORS-EXIST
MOVE "Q" TO RECORD-UPDATED
PERFORM P800-FIND-RECORD
MOVE "Q* TO W6-01-100
MOVE " * TO RECORD-UPDATED. EXIT.
P860-SET-BUTTONS.
IF W7-01-253 EQUAL "B" GO TO P865-BACK-UP.
IF NOT GUI-IN-USE
AND W7-01-253 NOT EQUAL *U" EXIT.
P861-READ-NEXT .
READ FILEO1.
IF STAT-KEY NOT EQUAL "00*
OR W8-06-000 NOT EQUAL W7-06-010
GO TO P862-PREVIOUS.
MOVE W8-06-007 TO WORK-DATE.
IF WORK-DATE LESS THAN CROSS-REFERENCE-DATE
GO TO P861-READ-NEXT.
IF W7-01-253 EQUAL "U® MOVE W8-11-006 TO W7-11-254
GO TO P868-RETURN.
SET-PGDN-NORMAL .
P862-PREVIOUS.
IF NOT GUI-IN-USE GO TO P864-EXIT.
MOVE "06" TO W7-02-008. READ-UNIQUE FILEO1.
P863-TEST.
IF STAT-KEY EQUAL "00*"
AND W8-13-000 NOT EQUAL W7-13-010
MOVE W8-06-007 TO WORK-DATE

185

Cyborg Scripting Language Advanced Customization - Participant's Guide

IF WORK-DATE LESS THAN CROSS-REFERENCE-DATE
READ FILEO1 GO TO P863-TEST
ELSE
SET-PGUP-NORMAL .
P864-EXIT.
MOVE * * TO W7-01-253. MOVE "24" TO W7-02-008. EXIT.
P865-BACK-UP.
MOVE W7-07-016 TO W7-07-254.
MOVE "06" TO W7-02-008. READ-UNIQUE FILEO1.
P866-TEST.
IF STAT-KEY EQUAL "00*"
AND W8-13-000 NOT EQUAL W7-13-010
MOVE W8-06-007 TO WORK-DATE
IF WORK-DATE LESS THAN CROSS-REFERENCE-DATE
READ FILEO1 GO TO P866-TEST
ELSE
MOVE W8-07-006 TO W7-07-254
READ FILEO1 GO TO P866-TEST.
P868-RETURN.
MOVE *"S* TO W7-01-301. MOVE * * TO W7-01-253. RETURN.

186

Appendix A: Exercise Answers

Section 5 exercise

SECURITY " *"_. @ Exercise 5 - READ-EMPLOYEE Technique
@LAST MODIFIED ON: 09-29-94 BY: AUTHOR:
P100-START.

READ-EMPLOYEE.
P110-STATUS-SELECTION.

FIND RESULTING-EMP-STATUS STARTING WITH CURRENT-DATE-CYYMDD
MATCH-SEGMENT-CODE.

IF NOT FOUND GO TO P900-RETURN.

IF RESULTING-EMP-STATUS EQUAL "1* OR "5" OR "9-

GO TO P900-RETURN.
P120-APPRAISAL-RESULTS-SELECTION.

FIND RATING-VALUE STARTING WITH CURRENT-DATE-CYYMDD
MATCH-SEGMENT-CODE.

IF NOT FOUND GO TO P900-RETURN.
P130-INSERT-NEXT-REVIEW-SEGMENT .

MOVE "010000" TO WORK-TIME-SPAN.

CALCULATE RATING-DATE + WORK-TIME-SPAN = HOLD-DATE.
FIND NEXT-REVIEW-TYPE STARTING WITH HOLD-DATE.

IF FOUND GO TO P900-RETURN.
MOVE "000100" TO WORK-TIME-SPAN.
CALCULATE HOLD-DATE - WORK-TIME-SPAN
MOVE "000007° TO WORK-TIME-SPAN.

SAVE-DATE-CYYMDD.

CALCULATE HOLD-DATE + WORK-TIME-SPAN = WORK-DATE.
INITIAL-SEGMENT-AREA.

MOVE "LzZQ" TO W8-03-000. @Segment Type/Code
MOVE HOLD-DATE TO W8-06-003. @NEXT-REVIEW-DATE
MOVE “SA®" TO W8-02-009. @NEXT-REVIEW-TYPE

MOVE SAVE-DATE-CYYMDD TO W8-06-051. @DISTRIBUTION-DATE
MOVE WORK-DATE TO W8-06-057. @DATE-RETURN-EXPECTED
INSERT-L-SEGMENT .

WRITE-EMPLOYEE.
POOO-RETURN.

RETURN.

SECURITY * ~_ @ Exercise 5 - UPDATE-EMPLOYEE Technique
@LAST MODIFIED ON: 09-29-94 BY: AUTHOR:
P100-START.
UPDATE-EMPLOYEE.
P110-STATUS-SELECTION.
FIND RESULTING-EMP-STATUS STARTING WITH
CURRENT-DATE-CYYMDD
MATCH-SEGMENT-CODE.
IF NOT FOUND UNLOCK-EMPLOYEE GO TO P900-RETURN.
IF RESULTING-EMP-STATUS EQUAL "1* OR *5" OR "9*
UNLOCK-EMPLOYEE GO TO P900-RETURN.
P120-APPRAISAL-RESULTS-SELECTION.
FIND RATING-VALUE STARTING WITH CURRENT-DATE-CYYMDD
MATCH-SEGMENT-CODE .
IF NOT FOUND UNLOCK-EMPLOYEE GO TO P900-RETURN.
P130-INSERT-NEXT-REVIEW-SEGMENT .
MOVE "010000" TO WORK-TIME-SPAN.
CALCULATE RATING-DATE + WORK-TIME-SPAN = HOLD-DATE.
FIND NEXT-REVIEW-TYPE STARTING WITH HOLD-DATE.
IF FOUND UNLOCK-EMPLOYEE GO TO P900O-RETURN.
MOVE "000100" TO WORK-TIME-SPAN.
CALCULATE HOLD-DATE - WORK-TIME-SPAN = SAVE-DATE-CYYMDD.
MOVE "000007" TO WORK-TIME-SPAN.
CALCULATE HOLD-DATE + WORK-TIME-SPAN = WORK-DATE.
INITIAL-SEGMENT-AREA.

187

Cyborg Scripting Language Advanced Customization - Participant's Guide

MOVE "LzZQ" TO W8-03-000. @Segment Type/Code
MOVE HOLD-DATE TO W8-06-003. @NEXT-REVIEW-DATE
MOVE "SA®" TO W8-02-009. @NEXT-REVIEW-TYPE

MOVE SAVE-DATE-CYYMDD TO W8-06-051. @DISTRIBUTION-DATE
MOVE WORK-DATE TO W8-06-057. @DATE-RETURN-EXPECTED
INSERT-L-SEGMENT .

WRITE-EMPLOYEE.
PO0O0O-RETURN.

RETURN.

188

Appendix A: Exercise Answers

Section 6 exercise

P XNDRPT 00000 SECURITY ' '. @ Pay Period Days Table Report XHRUSER
P XNDRPT 00001 @LAST MODIFIED ON: 03-19-99 BY: USER AUTHOR: USER USER
P XNDRPT 00100 DEFINE-REPORT NO-PE-DATES ALLOCATE-20. USER
P XNDRPT 00200 HEADER-1 :60 'Pay Period Days'. USER
P XNDRPT 00300 HEADER-2 :60 ' Table Report'. USER
P XNDRPT 00400 HEADER-3 :002 'Control ' USER
P XNDRPT 00500 HEADER-4 :002 'Nbr Pay Frequency'. USER
P XNDRPT 00600 HEADER-3 :039 ' Period Period Period'. USER
P XNDRPT 00700 HEADER-4 :039 'End Date Workdays Holidays'. USER
P XNDRPT 00800 P100-START. USER
P XNDRPT 00900 IF W6-06-047 EQUAL ' ! USER
P XNDRPT 01000 MOVE CONTROL-1-2 TO W6-06-047 MOVE TO W6-01-035 USER
P XNDRPT 01100 SET WORK TO :7 MOVE TO WORK USER
P XNDRPT 01200 ELSE IF CONTROL-1-2 NOT EQUAL W6-06-047 USER
P XNDRPT 01300 SET WORK TO :7 MOVE 'X' TO WORK RETURN. USER
P XNDRPT 01400 INITIAL-TABLE-AREA. USER
P XNDRPT 01500 MOVE '02' TO KEY01l-SIZE. USER
P XNDRPT 01600 MOVE 'X2' TO W7-02-010. @KEY01-AREA USER
P XNDRPT 01700 READ-UNIQUE FILEO1l. USER
P XNDRPT 01800 IF STAT-KEY NOT EQUAL RETURN. USER
P XNDRPT 01900 P200-SORT. USER
P XNDRPT 02000 MOVE-TABLE-RECORD. USER
P XNDRPT 02100 SPACE-EXTRACT-RECORD. USER
P XNDRPT 02200 OUTPUT '1XNDR' FORMS/REPORT-CODE NO-PRINT-GRAND-TOTAL USER
P XNDRPT 02300 SORT-LENGTH-22 CONTROL-1-2 X2-ND-CONTROL-NUM USER
P XNDRPT 02400 X2-ND-PAY-FREQ-CD X2-ND-PERIOD-ED-DT. USER
P XNDRPT 02500 P300-REPORT. USER
P XNDRPT 02600 PRINT '0' X2-ND-CONTROL-NUM X2-ND-PAY-FREQ-CD USER
P XNDRPT 02700 X2-ND-PAY-FREQ X2-ND-PERIOD-ED-DT X2-ND-PERIOD-WK-DY USER
P XNDRPT 02800 X2-ND-PERIOD-HL-DY. USER
P XNDRPT 02900 WRITE-EXTRACT. USER
P XNDRPT 03000 P400-READ-NEXT. USER
P XNDRPT 03100 UNLOCK FILEOl1l. MOVE TABLE-C01-40 TO W7-24-010. USER
P XNDRPT 03200 MOVE '24' TO W7-00-008. USER
P XNDRPT 03300 READ-UNIQUE FILEOl1. READ FILEOLl. USER
P XNDRPT 03400 IF STAT-KEY EQUAL TO '00' AND W8-02-000 EQUALS 'X2' USER
P XNDRPT 03500 GO TO P200-SORT USER
P XNDRPT 03600 ELSE USER
P XNDRPT 03700 RETURN. USER
RTXNDR 00 01220139114032221001 13:01:25 03-19 USER*

RTXNDRO010X2-ND-CONTROL-NUM 4000400210 X2002010 0014 4051530000
RTXNDRO20X2-ND-PAY-FREQ-CD 4000100600 X2011010 0032 PP29 1092540014
RTXNDRO30X2-ND-PAY-FREQ 4002000600 DX2013010 0047 PP29 1004100032
RTXNDR040X2-ND-PERIOD-ED-DT 4001000700 X2038010 0081 1125210047
RTXNDRO50X2-ND-PERTOD-WK-DY 4000302410 X2052010 0105 1125640081
RTXNDRO60X2-ND-PERIOD-HL-DY 4000302710 X2061010 0122 1125640105

189

Cyborg Scripting Language Advanced Customization - Participant's Guide

Section 6 exercise, continued

CORPORATION 99 ACNE MANUFACTURING Pay Period Days REPT FILE
DIVISION 9999 PRODUCTION CTL 1-2 Table Report XNDR TIME
Control Period Period Period

Nbr Pay Frequency End Date Workdays Holidays

9999 1 Weekly 03-31-2002 005 000

9999 2 Bi Weekly 03-12-2002 010 000

9999 3 Semi Monthly 03-31-2002 010 001

9999 4 Monthly 03-31-2002 020 001

VERSION 00

12:58

DATE

Page 1
03-19-2002

190

Appendix A: Exercise Answers

NOTES

191

Appendix B: Extra for Experts

Appendix B: Extra for Experts

Table of Contents
ACtivating USEr-0efiNEA TIlESveee et e et e st e te e beeraesraenres 195
FILE23 delivered COUE TOr UNDX ...ttt ettt ettt e s be e et e e sbe e e be e e ebeeebeaesaeeesbbeesbeeebeeas 198
FILE23 UNIX OVEITIAES. .. veiiivieiveeeitie et s itieeetee sttt eetee et eeetee e sbaeasbeeesbaeaebeeesbeeeebeeesbeeesaeeesbeeesbeeesbbeesbeeebesebessnrenas 199
FILE24 delivered COOE FOr UNIXciiiiiiiiiiectee ittt ettt sttt be s b b s e bt esbe e sbeebeesbesteesreesbeesbeesreenreanns 200
FILE24 UNIX OVEITIBSvieiveeiteiie ittt et eteeete bt et e steesbeesbeestesaesaaesbeeabeeabeesbesabesabesbsesbaesbaebeesbesreesbessbeeresnnearns 200
FILE25 delivered COUB TOr UNDXvi ittt ettt ettt e et e et e e sbe e e ebe e e ebeeebeeesaeeesbseesbeeenneeas 202
FILE25 UNIX OVEITIAES. .. veiiivieitieectie et e ctie et ete e e etee s st e e ete s e sbaeeebeeesbaeaebeeesbaeeabeeesbeeesbaeesbeeesbeeesbbeesbeeebessbenanrenas 202
PULL Control RECOId With OVEITIOES:ccvviviirieitie ittt ettt sttt et ettt ete e te et et estaesbaesbaesbeebesreesneesbeesreenreanns 204
System Control RepoSIitory KeY STFUCLUIE(S) ...vviveiieiieeiiccie et sie sttt ste e s sra e sre e teeaeeneesnaenreens 206
Employee Database KEY STIUCTUIE(S) .. e eeeeeierierieie ittt ettt ettt sttt et besbe b te bt e be e e ene e e e e aneeeneeas 216

193

Cyborg Scripting Language Advanced Customization - Participant's Guide

Activating User-Defined Files
1. Extract COBOL Source

2. Analyze COBOL Source

3. Extract COBOL Source Applying
Overrides

4. Compile Program/Link COBOL

NOTES

194

Appendix B: Extra for Experts

Activating user-defined files

COBOL programs
To use the User-defined files in your CSL programs, the CBSV COBOL
programs must be modified using overrides. The steps to override the CBSV
COBOL for User-defined files Includes:

1. Extract COBOL Source—Use the PULL utility to extract a copy of the
CBSV COBOL program.

2. Analyze COBOL Source—Determine what overrides are necessary for
your platform.

3. Extract COBOL Source Applying Overrides—Use the PULL utility to
extract a copy of the CBSV COBOL program applying the overrides.

4. Compile Program/Link COBOL.

195

Cyborg Scripting Language Advanced Customization - Participant's Guide

Extract The Solution Series
COBOL Programs

System Control
Repository
(FILEO1)

Employee
Database
(FILEO2)

Control Record w/

Master COBOL Overrides

(FILEO4)
7y

Source (FILEO5)

Ty
Audit/Message w
File P

(FILEO3)

Machine Specific
COBOL Source

\ﬂf@/

Compile and Link

Input Files: FILEO1 System Control Repository
FILEO2 Employee Database
FILEO4 Control Record File
FILEO5 Master CBSV Source File

Execute: CBSVB

Output Files: FILEO3 Audit/Message File

PULL Control Record:
1 1 2 2 3 3 4

FILE10 Extracted CBSV Source Code

4 5 5 6 6

1...5....0....56....0....5....0....56....0....56....0....5....0....56....0.//.0
PULL MCBSVO. 0OS XXXXXX. 7
Override User File
Indicator Indicator
(optional) (optional)
Override
gzzgm Operating Program-1D
Name System (optional)
Code

196

Appendix B: Extra for Experts

Activating user-defined files, continued

Step 1. COBOL Extract

The Solution Series COBOL Source Code programs reside in the CBSV Source
File. These programs are extracted from this file using the COBOL Extract
(PULL) process. Be sure to include the User File Indicator value in order to
extract the User-defined File definition(s).

To execute the COBOL Extract (PULL) program you must create a Control
Record in FILEO4 containing the following:

Position
Form Field 23-28
Code-2 Field 30

Key Field 31-37
38-40
Additional Key 41-47
Field
49

Option/Step/Description
Type PULL into the Program field.
Optionally, type M into the Code-2 field to indicate

the presence of override COBOL code in FILEO4. This
topic is discussed in more detail later.

Type the name of the COBOL program being
‘PULLed’, ending in a period.

Type your Operating System Code.

Optionally, type a COBOL PROGRAM-ID, ending in
a period, to override the ID.

Type a single digit identifying the user-defined file(s)
definitions to be included into the source code.

Each file has a file code: FILE23 =1, FILE24 = 2,

FILE25 = 4. These codes can be added together to
include various file combinations.

197

Cyborg Scripting Language Advanced Customization - Participant's Guide

Analyze COBOL—FILEZ23

FILE23 delivered code for UNIX

003895 SELECT FILE23 ASSIGN TO EXTERNAL FILE23
003970 ORGANIZATION IS INDEXED ACCESS 1S DYNAMIC
003980 RECORD KEY 1S FILE23-KEY STATUS 1S STAT-KEY.

011800 FD FILE23

011840 BLOCK CONTAINS 24 RECORDS LABEL RECORDS ARE STANDARD.
011900 01 FILE23-RECORD.

011920 05 FILE23-KEY PIC X(???).

011940 05 FILE23-DATA PIC X(???).

060860 05 W7-36-008RE REDEFINES W7-36-008.
060870 O7KEY-SIZE-AND-KEY.

060880 10 KEY23-SIZE PIC S99.

060900 10 START-KEY23 PIC X(24).

060920 O7FILLER PIC X(10).

065000 25 FILE-AREA-80RE REDEFINES FILE-AREA-80.
065020 30 KEY-23 PIC X(24).

065040 30 FILLER PIC X(56).

328850 22223-FILE23. MOVE ZEROS TO STAT-KEY.
328900 MOVE 3060 TO X-LENGTH.

328950 IF RTN3 = "0O*

329000 IF FILE23-STATUS = "0" GO TO 22290-RESULT
329050 ELSE GO TO 22223-0PEN.

329100 IF RTN3 = *“C*

329150 IF FILE23-STATUS = "0" GO TO 22223-CLOSE
329200 ELSE GO TO 22290-RESULT.

329250 IF FILE23-STATUS NOT = "0" GO TO 22223-0OPEN.
329350 IF RTN3 = "R* GO TO 22223-READ.
329600 IF RTN3 = "D" GO TO 22223-DELETE.

329650 IF RTN3 = "T" GO TO 22223-REWRITE.

329800 MOVE *N®* TO START-23.

329850 IF RTN3 = "B" OR "S" GO TO 22223-START.
329900 IF RTN3 = "W" GO TO 22223-WRITE.

329950 IF RTN3 = "U" GO TO 22290-RESULT.

330000 MOVE "90" TO STAT-KEY. GO TO 22290-RESULT.
330050 22223-DELETE. MOVE "N* TO START-23.

330350 MOVE FILE-AREA TO FILE23-RECORD.

330600 DELETE FILE23 RECORD INVALID KEY GO TO 222891-NRF.
332000 GO TO 22290-RESULT.

332050 22223-CLOSE.

332150 CLOSE FILE23

332550 MOVE *"C* TO FILE23-STATUS.

332600 GO TO 22290-RESULT.

332650 22223-0PEN.

332750 OPEN 1-0O FILE23

333500 MOVE "0" TO FILE23-STATUS.

333550 IF RTN3 NOT = "0" GO TO 22223-FILE23.

333600 GO TO 22290-RESULT.

333650 22223-READ. IF START-23 NOT = "Y" GO TO 222891-NRF.
333700 22223-READ-IT.

333750 READ FILE23 NEXT INTO FILE-AREA

333850 AT END GO TO 222893-EOF.

335650 IF STAT-KEY NOT = ZEROS GO TO 22290-RESULT.
336050 22223-CHECK. IF RTN3 NOT = "R" GO TO 22223-START-CHECK.
336350 GO TO 22290-RESULT.

336400 22223-REWRITE.

337100 MOVE *"N® TO START-23.

337150 MOVE FILE-AREA TO FILE23-RECORD.

337350 REWRITE FILE23-RECORD

337450 INVALID KEY GO TO 222891-NRF.

339800 GO TO 22290-RESULT.

339850 22223-START.

340100 MOVE KEY23-SIZE TO RTN-SUB. MOVE 24 TO NBR-CHARS.
340200 MOVE LOW-VALUES TO VAR2. MOVE RTN-SUB TO NBR-CHARS.
340350 MOVE START-KEY23 TO VAR2. MOVE 24 TO NBR-CHARS.
340400 MOVE VAR2 TO KEY-23. MOVE RTN-SUB TO NBR-CHARS.

198

Appendix B: Extra for Experts

341550
341600
341700
343650
343750
343800
344100
344600
344800
344850
345500
345550
345600
345700
347450

MOVE KEY-23 TO FILE23-KEY.
START FILE23 KEY IS NOT LESS THAN FILE23-KEY
INVALID KEY GO TO 222891-NRF.
IF STAT-KEY NOT = ZEROS
GO TO 22290-RESULT.
MOVE *Y® TO START-23.
GO TO 22223-READ-IT.
22223-START-CHECK.
MOVE START-KEY23 TO VAR1. MOVE KEY-23 TO VAR2.
IF VAR1 NOT = VAR2 MOVE "01" TO STAT-KEY.
GO TO 22290-RESULT.
22223-WRITE.
WRITE FILE23-RECORD OF FILE23 FROM FILE-AREA
INVALID KEY GO TO 222892-DUP.
GO TO 22290-RESULT.

FILE23 UNIX Overrides

011920
011940

05 FILE23-KEY PIC X(24).
05 FILE23-DATA PIC X(476).

Activating user-defined files, continued
Step 2: Analyze COBOL

Note:

The second step in activating User-defined files is analyzing the COBOL for each
User-defined file you will be using.

The functions to handle file processing have already been included in the standard
COBOL paragraphs 222nn, where ‘nn’ is 23, 24, or 25 indicating the user file.
However, you must provide the record length for each file.

FILE23
The example for FILE23 is for a UNIX platform, additional overrides may be
needed dependant upon your platform:

B Check the SELECT statement. Is it correct for your environment?
B Check the FD statements. Where applicable, make changes to the record size
and blocking factor.

The FILE23-KEY size may not exceed 24 positions, and the total FILE23-
RECORD size may not exceed 3060 positions.

B Review paragraphs 22223 and make machine dependent changes as needed. To
eliminate update capabilities, change paragraph P22223-FILE23 code by
commenting or deleting statements testing RTN3 (D=Delete, T=Rewrite,
W=Write).

B IBM/CICS users must specify a proper FILENAME in the CICS command.

B UNIVAC users must review TIP specifications.

199

Cyborg Scripting Language Advanced Customization - Participant's Guide

Analyze COBOL—FILE?24

FILE24 delivered code for UNIX

003995

011960
011980

012040

347500
347550
347600
347650
347700
347950
348000
348050
348300
348350
348400
348500
348700
348750
348760
348770
348775
348785
348790
348800
349000
349050
349100
349200

SELECT FILE24 ASSIGN TO EXTERNAL FILE24.

FD FILE24
BLOCK CONTAINS 12 RECORDS LABEL RECORDS ARE STANDARD.

01 FILE24-RECORD PIC X(3060).

22224-FILE24.
MOVE ZEROS TO STAT-KEY.

IF RTN3 = "R"
IF FILE24-STATUS = "0" GO TO 22224-READ
ELSE GO TO 22224-0OPEN.
IF RTN3 = "0O°
IF FILE24-STATUS = "0" GO TO 22290-RESULT
ELSE GO TO 22224-0OPEN.
IF RTN3 = *C*
IF FILE24-STATUS NOT = "0" GO TO 22290-RESULT
ELSE MOVE *C® TO FILE24-STATUS
CLOSE FILE24
GO TO 22290-RESULT.
MOVE "90" TO STAT-KEY. GO TO 22290-RESULT.

22224-0PEN.
OPEN INPUT FILE24.
IF STAT-KEY NOT = "00" GO TO 22290-RESULT.
MOVE "0® TO FILE24-STATUS.
IF RTN3 = "0" GO TO 22290-RESULT.
22224-READ.
READ FILE24 AT END
MOVE HIGH-VALUES TO FILE-AREA-150 GO TO 222893-EOF.
STRING FILE24-RECORD DELIMITED SIZE INTO FILE-STRING.
GO TO 22290-RESULT.

FILE24 UNIX Overrides

012040 01 FILE24-RECORD PIC X(500).

200

Appendix B: Extra for Experts

Activating user-defined files, continued
FILE24
The example for FILE24 is for a UNIX platform, additional overrides may be
needed dependant upon your platform:

B Check the SELECT statement. Is it correct for your environment?
B Check the FD statement. Where applicable, make changes to the record size
and blocking factor.

Note: The FILE24-RECORD size may not exceed 3060 positions.

B Review paragraphs 22224 and make machine dependent changes as needed.
B IBM/CICS users must specify a proper FILENAME in the CICS command.
B UNIVAC users must review TIP specifications.

201

Cyborg Scripting Language Advanced Customization - Participant's Guide

Analyze COBOL—FILE?25

FILE25 delivered code for UNIX

004115

012060
012080
012140

349250
349300
349350
349400
349450
349700
349750
349800
349900
350100
350150
350200
350250
350500
350510
350520
350525
350535
350540
350550
350750
350850

SELECT FILE25 ASSIGN TO EXTERNAL FILE25.

FD FILE25
BLOCK CONTAINS 12 RECORDS LABEL RECORDS ARE STANDARD.
01 FILE25-RECORD PIC X(3060).

22225-FILE25.
MOVE ZEROS TO STAT-KEY.

IF RTN3 = “w*©
IF FILE25-STATUS = "0" GO TO 22225-WRITE
ELSE GO TO 22225-0PEN.
IF RTN3 = *C*
IF FILE25-STATUS NOT = "0" GO TO 22290-RESULT
ELSE MOVE *C" TO FILE25-STATUS
CLOSE FILE25
GO TO 22290-RESULT.
IF RTN3 = "0O°
IF FILE25-STATUS = "0" GO TO 22290-RESULT
ELSE GO TO 22225-0PEN.
MOVE "90" TO STAT-KEY. GO TO 22290-RESULT.

22225-0PEN.
OPEN OUTPUT FILE25.

IF STAT-KEY NOT = "00" GO TO 22290-RESULT.
MOVE "0" TO FILE25-STATUS.
IF RTN3 = "0" GO TO 22290-RESULT.

22225-WRITE.
WRITE FILE25-RECORD FROM FILE-AREA.
GO TO 22290-RESULT.

FILE25 UNIX Overrides

012140 01 FILE25-RECORD PIC X(300).

202

Appendix B: Extra for Experts

Activating user-defined files, continued
FILE25
The example for FILE25 is for a UNIX platform, additional overrides may be
needed dependant upon your platform:

B Check the SELECT statement. Is it correct for your environment?
B Check the FD statement. Where applicable, make changes to the record size
and blocking factor.

Note: The FILE25-RECORD size may not exceed 3060 positions.

B Review paragraphs 22225 and make machine dependent changes as needed.
B IBM/CICS users must specify a proper FILENAME in the CICS command.
B UNIVAC users must review TIP specifications.

203

Cyborg Scripting Language Advanced Customization - Participant's Guide

Extract The Solution Series

(FILEO1)

Input Files:

Execute:

Output Files:

System Control
Repository

COBOL Programs

_

Master COBOL
Source (FILEO5)

-"I
Employee
Database
(FILEO2)

Control Record w/

Overrides

(FILEO4)

Ty
Audit/Message g
File "

Machine Specific
COBOL Source

ﬂ?@/

Compile and Link

(FILEO3)

FILEO1 System Control Repository
FILEO2 Employee Database
FILEO4 Control Record File
FILEOS Master CBSV Source File

CBSvB

FILEO3 Audit/Message File
FILE10 Extracted CBSV Source Code

PULL Control Record with Overrides:

1 1 2 2 3 3 4 4 5 5 6 6 7 8
1...5....0....5....0....5....0....5....0....5....0....5....0....5....0.7/.0
PULL MCBSVO. MF2 7
C011920 05 FILE23-KEY PIC X(24).
€011940 05 FILE23-DATA PIC X(476).
€012040 01 FILE24-RECORD PIC X(500).
C012140 01 FILE25-RECORD PIC X(300).

204

Appendix B: Extra for Experts

Activating user-defined files, continued

Step 3: Extract COBOL Apply Overrides
The third step in activating User-defined Files is to extract the CBSV COBOL
programs with the appropriate overrides. The PULL program is executed with
COBOL overrides.

B The Control Record in FILEO4 is used to indicate whether overrides are
present.

B Override lines of COBOL code are placed in FILEO4 following the PULL
Control Record.

B When the override indicator is present, the program reads FILEO4 and applies
the override COBOL code with the CBSV source file to FILE10.

PULL Control Record Modification
To indicate that override COBOL code is present, change the Control Record in
FILEO4 with the following:

& Refer to PULL for a full explanation of the other parameters.

Code-2 Field
Position Option/Step/Description

30 Type M into the Code-2 field to indicates the presence of override
COBOL code in FILEOA4.

Step 4: Compile and Link
The 4th step in activating User-defined files is to compile and link the CBSV
COBOL programs. This is accomplished by following your normal compile and
link procedures for a The Solution Series COBOL program.

205

Cyborg Scripting Language Advanced Customization - Participant's Guide

System Control Repository Key Structure(s)

‘A’ Records

The “A’ Records contain the Machine Control Cards and Pointer Fields unique to
each Operating System platform. These Machine Parameters include the Pointer
and System Control Information.

Key structure is:

Column(s) Value

1 A (literal)
2 Blank
3-12 A COMPUTER (literal) (First record only—subsequent records equal B
followed by the machine tailor code and program name)
25-27 Operating system code of computer being used
Object Code(s):
Object Object Description
A A Records (Machine Parameters)
‘B’ Records

The ‘B’ records contain the Working Storage Expansion Parameters that are used
when the CBSV programs are created. The Working Storage areas are defined the
same way for both CBSVO and CBSVB. Over time, the areas will need to be
expanded to accommodate the size of your company’s Employee, and Company
information. The ‘B’ Records contain the information the system needs to expand
these areas.

Key structure is:

Column(s) Value

1 B (literal)
2-7 Sequence number
Object Code(s):
Object Object Description
B B Records (Expansion Records)

206

Appendix B: Extra for Experts

‘C’ Records

The “C’ Records contain the Option List values and description (value translation)
for fields using a code scheme. These values are used by The Solution Series to
validate data input into specific fields.

Key structure is:

Column(s) Value

1 C (literal)

2 Blank

3-7 Option List Name

8-21 Option value

22-24 Sequence number
Object Code(s):

Object Object Description

C Option List

C/D Option List Description

CIv Option List Values

‘D’ Records

The ‘D’ Records contain defaults for form models that can be set up to contain
pre-defined data. These are ‘compiled’ into form-image records that reside on the
System Control Repository (FILEOL).

Key structure is:

Column(s) Value

1 D (literal)

2 Blank

3-8 Control 1-2 value

9-24 Form Key fields and data fields

207

Cyborg Scripting Language Advanced Customization - Participant's Guide

‘ECM’ Records

The ECM records create context sensitive menu records that allow the user to
navigate to related forms directly without using the Menus or Navigator. The
ECM records are used in online forms instead of Section 9 Prompts.

Key structure is:

Column(s) Value

1-3 ECM (literal)

4-9 Form program

10 Blank

11-12 Sequence number

13-24 Blank

25-30 Form program to be accessed by the ECM record

31 Blank

32 ‘L’ to indicate a line separator otherwise leave blank

33 ‘Y’ to indicate a form program otherwise leave blank

34-64 Form name of the program to be accessed by the ECM record
‘F Records

The ‘F’ records contain Cyborg’s data dictionary called the Field Name Table.
All data fields are defined here with their associated characteristic code and
documentation. Each must have a unique name that is part of the Key to the Field
Name record. Data Dictionary items include Verbs, Reserved Words, Fields, and
File definitions.

Key structure is:

Column(s) Value

1 F (literal)

2 Blank

3-22 Name of field, reserved word, file or verb

23-24 Sequence number/code
Object Code(s):

Object Object Description

F Field Table Entries

F/D Field Table Documentation

F/S Field Security

FIV Verbs

F1 Field Entry

FTM Field Table Menu

FTX Field Table Cross Reference

208

Appendix B: Extra for Experts

‘MCL’ Records
The “MCL’ records are used to store the updates needed for FILECL.

Key structure is:

Column(s) Value

1-3 MCL (literal)

3-11 Date (ccyymmdd)
12-15 Time (hhmm)
16-19 Session number
20-23 Transaction number

‘MMN’ Records

The ‘MMN’ records are used to store the system menus that are placed into the
menu bar and Navigator.

Key structure is:

Column(s) Value

1-3 MMN (literal)

4 Language Indicator (P=primary, A=alternate)
5 Menu number

6-7 1st level Sub menu number

8-9 2nd level Sub menu number

209

Cyborg Scripting Language Advanced Customization - Participant's Guide

‘P’ Records

The ‘P’ Records contain all source, object, documentation, error messages, and so
forth for CSL/EL forms, reports and utilities reside on the System Control
Repository (FILEQO1) as Program Records.

Key structure is:

Column(s) Value

1 P (literal)

2 Blank

3-8 File name

9 Record Type
10-14 Sequence number
15 Sequence code

Record Types are:

Value Description
Blank CSL/EL Source Code
A Temporary use (P-RSEQ)
E Error Recap Records
G Generated CSL/EL Source Code
J Sample Control Records and JCL
L Menu list records
M Documentation records
R Messages (Reject/Warning/Memao)
S Form Appearance Table Records
T Demonstration (Test) data records
W Cyborg Assembler Code
X Object Code
Object Code(s):
Object Object Description
P P Records
P/M P Records—Documentation
P-X P Records—Except Object Records
P/R P Records—Error messages
P/ P Records—CSL/EL source
P/S P Records—Form Appearance Table
P/E P Records—Reload messages
PIT P Records—Test data
P/G Generated CSL/EL Source Code
P/W P Records—Assembler source
P/H P Records—Change history
P/X P Records—Obiject code
P/J P Records—Sample JCL

210

Appendix B: Extra for Experts

RPT Report
P/L P Records—Menu List
RS Report source

‘PC’ Records
Organization Number Report Validation records are used to specify which reports
are to be produced for each Organization Number on your Employee Database
(FILEO2). The C12RPT form is an optional form that will contain a list of reports
valid to be run for each Organization Number. The REPORT program assumes all
reports are valid for every Control 1-2 unless the ‘PC’ (C12RPT Form) records
are set up.

Key structure is:

Column(s) Value

1-2 PC
3-8 Organization Number
9-14 Report Code
15 Blank
16-23 SECURITY verb
Object Code(s):
Object Object Description
PC C12RPT—Organization Number Report Validation Records

211

Cyborg Scripting Language Advanced Customization - Participant's Guide

‘PD’ Records

Restricted Organization Number Report Scheduling Records are optional records,
which are used to define which Organization Numbers are to be included in
reporting, per the ‘PE’ (RUNREP Form) record. The RUNC12 form is used to
create the list of Organization Numbers for reporting. The ‘PD’ record name must
be identical to the ‘PE’/RUNREP record name to which it applies.

Key structure is:

Column(s) Value

1-2 PD
3-8 RUNREP Name
9-14 Organization Number
15-24 Organization Level 1 Name
Object Code(s):
Object Object Description
PD RUNC12—Organization Number Report Scheduling Records

‘PE’ Records
Report Scheduling Records are used to schedule reports. They must have a six-
character file name that indicates the report job. ‘PE’ records are created through
the Report Group form and contain a list of reports to be run together. Some
reports may require special dates or other parameters in the PARAMETERS field.
A header record is required on all report groups.

Key structure is:

Column(s) Value

1-2 PE

3-8 Report Group Name

9-14 Report Code

15-35 Report Parameters (ALLOCATE-AREA)

Header structure is:

Column(s) Value

1-2 PE
3-8 Report Group Name
9-23 blanks
24 H
25-64 Title
Object Code(s) are:
Object Object Description
PE Report Scheduling Records

212

Appendix B: Extra for Experts

‘PR’ Records
Position Control Table Records are used to access Position Control records.

Key structure is:

Column(s) Value

1-2 PR

3-6 PC Control Number
7-16 Position Number
17 Record Type

‘Q’ Records

Alternate Key Records are index pointers created using the Master Record Key
and other field information. These pointers allow the System Control Repository
(FILEO1) to access Employee Database (FILEO2) records when a Query (on-line
report) is executed.

Key structure is:

Column(s) Value

1 Q (literal)

2-3 Key code

4-22 Key data

23-24 Duplicate Key indicator

Object Code(s):
Object Object Description
Q Alternate Key records
‘R’ Records

Report Format Records—When batch report source code is compiled, R records
are created on the System Control Repository (FILEOL).

Key structure is:

Column(s) Value

1 R (literal)
2 Blank
3-7 Report Code and Type
8-9 Report Record Type
Object Code(s):
Object Object Description
R R Records—Report format records

213

Cyborg Scripting Language Advanced Customization - Participant's Guide

‘RQM’, ‘RRM’, ‘RSM’, and ‘RXM’ Records
System Control Repository (FILEOL) records for Solution View Specification are
RQM, RRM, RSM, and RXM records. WRITER program to build the Report or
Query Source code from the User’s entry to the WRITER form(s).

Key structure is:

Column(s) Value

1-3 RQM, RRM, RXM, or RSM
4-9 Query Report Name (File name)
10 Record Type
11-13 Segment and Segment Code
14 Sequence Number
15-24 Field name

‘RT’ Records

Report Output Position/Totaling Records are used to define output detail and total
parameters for a report. Information on this record is used to obtain Field Name
Table definition for printing field data on the report.

Key structure is:

Column(s) Value

1-2 RT
3-7 Report Code and Type
8-9 Sequence Number
10-28 Field Name
Object Code(s):
Object Object Description
RT RTEDIT Records—Report Output Position/Totaling

‘T' Records

Table Record records contain static company information displayed for an
employee record based on a code present on the Master Record. The best way to
view table records is to execute the table form in Inquiry mode.

Key structure is:

Column(s) Value

1-2 Table ID

3-24 Table Key fields (varies by table)
Object Code(s):

Object Object Description

T Table Records

214

Appendix B: Extra for Experts

‘Y' Records

Security records contain the security access for each individual sign-on sequence,
as well as any security violations. Security Records have an encrypted key
structure and are discussed in the Security Manual.

Object Code(s):
Object Object Description
Y Security Records
YV Security Violation Records

‘ZL’ Records

Locked records are used by the system to determine whether a record is currently
being updated. Locked records are temporary and will remain on FILEOL only if
an abnormal termination of a program occurs. To remove ZL records from
FILEOL use the UNLOCK program.

Key structure is:

Column(s) Value

1-2 ZL

3-8 Control 1-2

9 Master Record Type
Object Code(s):

Object Object Description

ZL Locked Records

215

Cyborg Scripting Language Advanced Customization - Participant's Guide

Employee Database Key Structure(s)

Report Generator Records

Report Generators reside first on FILEO2 and are stored in executable form only.
Although the Payroll Process uses Report Generators, they are maintained on the
Employee Database for the purpose of performing an on-line pay calculation.

Key structure is:

Columns Value
1-3 Binary record length
4-9 Report Generator Name

Company Records

Company records contain information on the Company Name & Address,
Company HEDs, Control Levels, Pay frequencies, and Pay Run parameters.

Key structure is:

Columns Value

1-3 Binary record length
4-9 Organization Number
10 Record Type (D)
11-31 Blanks

Tax Records

Tax Records (Record Type H) contain the tax body data used to calculate the
deductions for the pay cycle.

Key structure is:

Columns Value

1-3 Binary record length
4-9 Organization Number
10 Record Type (H)
11-14 Tax Body ID

216

Appendix B: Extra for Experts

Employee Records

Employee Records follow the corresponding Company Records for the
Organization Number on FILEO2. The information contained in the Employee
Records includes: Name and Address, Labor Split, HEDs, Taxes, and Human
Resources data.

Key structure is:

Columns Value

1-3 Binary record length

4-9 Organization Number

10 Record Type (M)

11-20 Employee Number

21-22 History Unique (Binary or 99)

‘Other’ Records

Record Type can be F or G for other records that follow the company header, or it
can be W or X for other records that follow Employee Records. One example of
‘Other’ records are W records used for processing W2 tax information.

Key structure is:

Columns Value

1-3 Binary record length
4-9 Control 1-2

10 Record Type (Various)
11-20 Other Key fields

On-line Pay Calc Records

These are history/labor records created by the PAY-CP program. There are three
ZQ records created for each session in which a PAY-CP is processed. These are
reused within the session, so only the last calculation is displayed. The three
records created contain:

Record 1—Input fields from PAY-CP form.

Record 2—Card stack created from PAY-CP form data: Batch Card, AE-SCR
data, Timecard.

Record 3—Results of the calculation, for display.
Key structure is:

Column(s) Value

1-3 Binary record length
4-5 ZQ
6-9 Session Number

217

Cyborg Scripting Language Advanced Customization - Participant's Guide

Executable Code Records

Executable code from the System Control Repository (FILEOL) is copied to the
Employee Database (FILEQZ2) for each program executed on-line in batch. Allows
for faster processing because fewer ‘read’ operations are required.

Key structure is:

Columns
1-3

4-6

7-12

13

Value

Binary record length

ZX

Program Name

Sequence number (tie breaker)

Session Records

The first record is the Session Index Record. This record is used when logging on
to assign new session numbers. There are other session records, one to a session,
displaying the last form executed in the session. When the area directly after the
Operator ID is blank it indicates the session was used for a batch job.

Key structure is:

Columns
1-3

4-5

6-9

10-13

Value

Binary record length
zY

Session number
Operator ID

Audit Records

Audit Records are form “snap shots’ of information entered in online sessions.
Key structure is:

Columns
1-3

4-5

6-9

10-13

Value

Binary record length

ZZ or ZI

Session Number

Audit Record Number (within the session)

218

Appendix B: Extra for Experts

Time entry/Adjustment Transaction Records

Time entry and Adjustment Transaction ‘ZZA’ Records are written to FILE02
whenever a time card or adjustment form is entered. These records used in the pay
cycle and are written to FILE10 by PAYXTR.

Key structure is:

Columns Value

1-3 Binary record length

4-6 ZZA

7-12 Organization Number

13-16 Session Number

17-20 Audit Record Number (within session)

219

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

220

Appendix C: The TRACE Utility

Appendix C: The TRACE Utility

Table of Contents
THE TRACE UL ...ttt bbb bbbt bbbttt bt 222
Tracing an entire Program ONIINEoiceiiiiei et te e e e e et e besaeetesneanaeseeseeneeneens 224
Tracing a portion of the program—DbatCh FEPOISciie i 225
Tracing paragraphs within @ program—TRACE VEIDScoi it 226
AGAITIONAT TFACE TIPS ..ttt bbbt bbb bbb bbb bbbt b et s bbbt 229
Reading the TRACE OULPULcveieiiie ettt e et e st et e tesae et e e e essesaebestesteateeneeneeseeneeneeseenen 231
TRACE @XAMPIES. ... ettt s e st et e e st e e s e s te e be e be e s teeseesteesteeseeereeaReeateeteenaeeneeaneerean 232

221

Cyborg Scripting Language Advanced Customization - Participant's Guide

The TRACE utility

The TRACE utility provides a method that allows you to follow system processes
at the conclusion of a program. You have the option of executing TRACE in
either online or batch. There are two ways to run a trace on a program;

B Using the TRACE program
B Using the special TRACE- verbs

« TRACE-ON
o« TRACE-OFF

TRACE Output

At the conclusion of the program, the TRACE output is written to FILEO3. The
following discusses the various file outputs written by TRACE:

W In the delivered JCL for PC Solution Series the output, for traces completed in
an RPT program, is written to REPORTO3.LIS.

B For traces completed in the (-RP) special print program, the output is written
to the report output file, RTPRNTO3.LIS.

W For traces completed in an on-line program, the output is generally written to
file SCREEN.03 where SCREEN is the name of the on-line program being
traced. For example, the trace output for form program 40-SCR.03 would be
written to 40-SCR.03.

TRACE output options

You have the option in any of these cases of changing the name of the trace
output file by either modifying the JCL to have FILEO3 point to a different
directory/filename or by typing in a new name on the on-line pop-up when it
prompts you for the trace file name. This can be useful when you want to compare
trace outputs from different runs of the same program.

B The TRACE program conditions a program for a trace based on the program
name and a beginning paragraph label designated in the key field of the control
record.

B You must be running either CBSVOT or CBSVBT (Trace version COBOL
programs) to execute the TRACE program.

222

Appendix C: The TRACE Utility

Tracing an entire program in batch

To trace an entire program in batch, execute TRACE in a batch run. To do this,

two control records are needed:

1. The TRACE Control Record—to condition the program for the trace.
2. The Program Control Record—to execute the program to be traced.

TRACE batch example
1 2 3 4

1...5....0....5....0....5....0.. 0....5....

P TRACE J00100 999999TRACE XX RPT lOO

: Beginning

paragraph label

Program to be traced

1 2 3 4

5....00...5....00...5....0....5....0....5....

1.
P TRACE JO0100 999999TRACE XX-RPT 100
P TRACE J00100 999999XX-RPT

Program to be traced

The trace is turned on at the designated paragraph label and continues until the

CBSVBT program is executed.

223

Cyborg Scripting Language Advanced Customization - Participant's Guide

Tracing an entire program online
Executing TRACE

Complete the following steps in order to execute a trace:
1. Type TRACE in the Program field in the Command dialog box.

2. Type the name of the program you want to trace in the first six positions of the
Key field.

3. Type the paragraph number you want to begin with in the last three positions
of the Key field.

4. Press Enter.

Result: The system prepares the program for the trace by placing the program name
and beginning paragraph number in the field TRACE-HOLD. This field resides in
Pointer 7.

5. Type the name of the program you want to trace in the Program field in the
Command Dialog.

6. Type any Key field data that the program requires for execution in the Key
field.

7. Press Enter.

Result: The system begins its trace of the program, beginning with the paragraph
number that resides in TRACE-HOLD. The trace continues until you exit CBSVOT by
logging off the system.

8. Type GOODBY in the Program field to exit CBSVOT and end the trace.
9. Press Enter key.

Result: CBSVOT generates writes trace records to FILEO3. Print FILEO3 to review
the trace records.

224

Appendix C: The TRACE Utility

Tracing a portion of the program—Dbatch reports

The following trace example displays how extract records are being created for
the report XX-RPT. The trace is done on the batch report during the first pass of
the report print process (REPORT) only.

1 2 3 4 5
1...6....0....56....0....5....0....5....0....5....0
P TRACE J00100 999999TRACE XX-RPT 100
P TRACE J00100 999999REPORT WEEKLY

In order to trace a subroutine during the report print process, or second pass, the
control records would look like the following example:

1 2 3 4 5
1...6....0....56....0....5....0....56....0....5....0
P TRACE J00100 999999TRACE CYBP10 100
P TRACE J00100 999999RTPRNT

In order to trace a special print options program, the control records would look
like the following example:

1 2 3 4 5
1...6....0....56....0....56....0....5....0....5....0
P TRACE JO0100 999999TRACE XX-RP 100
P TRACE J00100 999999RTPRNT

225

Cyborg Scripting Language Advanced Customization - Participant's Guide

Tracing paragraphs within a program—TRACE verbs

Note:

Note:

If you want to trace only a small section of a program, you may limit the trace by
using special trace verbs:

B TRACE-ON
can be inserted anywhere within the source code of your program

B TRACE-OFF
must be placed before any RETURN verb and can be placed at the end of any
logic you wish to trace

Remember to use the RELOAD program once the trace verbs have been inserted.

The trace is executed by running the program to be traced under CBSVOT or
CBSVBT. The trace begins at the next line of the paragraph logically following
the TRACE-ON verb, and ends when the TRACE-OFF verb is encountered.

The Solution Series on a PC Network or NT platform do not have CBSVOT or
CBSVBT. Instead, the presence of the trace verbs (after recompiling) initiates the
trace and, if the TRACE-OFF verb is not used. Entering GOODBY in the Screen
field will end the trace.

Debugging notes are written to FILEO3 (when you log off, if running CBSVOT).

226

Appendix C: The TRACE Utility

Tracing paragraphs within a program—TRACE verbs, continued
Sample Program with TRACE verbs inserted

To turn a trace on in your program, insert the verb, TRACE-ON, at the starting
point where you wish to trace. You may insert a TRACE-OFF verb to stop the
tracing of code at a certain point as well. The program will be traced for all
processing between these two verbs. The following provides examples of how to
use TRACE- verbs:

P 1A-RPT 00000 SECURITY "HR". @ ALPHA LIST-ACTIVE & INACTIVE
EMPLOYEES XHR

P 1A-RPT 00001 @LAST MODIFIED ON: 11-03-95 BY: CE

AUTHOR: CE

P 1A-RPT 00003 @Report 1A-RPT provides you with a listing of
all active

P 1A-RPT 00004 @and inactive employees in alphabetical order.
P 1A-RPT 00020 DEFINE-REPORT NO-PE-DATES ALLOCATE-DATE NO-
VERS 10N-NUMBER .

1A-RPT 00040 HEADER-1 :52 “ALPHABETIC LISTING OF ACTIVE".
1A-RPT 00060 HEADER-2 :55 "AND INACTIVE EMPLOYEES".

1A-RPT 00080 HEADER-3 :38 "EMPLOYEE".

1A-RPT 00100 HEADER-3 :51 "CTRL CTRL CTRL".

1A-RPT 00120 HEADER-3 :75 "CTRL MAIL HIRE EMPLOYEE".
1A-RPT 00140 HEADER-4 :3 "EMPLOYEE-NAME®.

1A-RPT 00160 HEADER-4 :38 "NUMBER THREE FOUR FIVE SIX".
1A-RPT 00180 HEADER-4 :82 "DISTRIBUTION DATE STATUS".
1A-RPT 00200 P200-SELECT.

1A-RPT 00210 TRACE-ON.

1A-RPT 00220 FIND-ACTIVITY.

1A-RPT 00240 IF NOT-FOUND TRACE-OFF RETURN

1A-RPT 00260 IF RESULTING-EMP-STATUS NOT EQUAL "0" AND *"3*
AND "4-

P 1A-RPT 00280 TRACE-OFF RETURN.

P 1A-RPT 00300 SET RESULTING-EMP-STATUS TO SAVE.

P 1A-RPT 00320 P300-SORT-OUTPUT.

P 1A-RPT 00340 PRINT "11A-R" FORMS/REPORT-CODE PRINT-GRAND-
TOTAL

P 1A-RPT 00360 DOUBLE-SPACE-BEFORE CONTROL-1 BREAK-DEFAULT
P 1A-RPT 00370 SORT-LENGTH-42 CONTROL-2

P 1A-RPT 00380 EMPLOYEE-NAME-25 EMPLOYEE-NO "1 EMPLOYEE-

WUV TUVTTUVTTUVTUOUTUTUTTUTTUTUTUTO

1A-RPT 00400 EMPLOYEE-NUMBER .

1A-RPT 00420 FIND-LOCATION.

1A-RPT 00440 IF NOT-FOUND SPACE-OVER :26

1A-RPT 00460 ELSE PRINT CTRL-3-THRU-6 MAIL-DISTRIBUTE-DATA.
1A-RPT 00480 SET RESULTING-EMP-STATUS TO SAVE.

1A-RPT 00500 PRINT ORIGINAL-HIRE-DATE RESULTING-EMP-STATUS
1A-RPT 00520 EMPLOYEE-STATUS.

1A-RPT 00540 MOVE :1 TO PERM-01-VO.

1A-RPT 00560 OUTPUT PERM-01-VO. WRITE-EXTRACT.

1A-RPT 00570 TRACE-OFF.

WUV TUVTTUVTTUVTTUTTUTTUTUTO

227

Cyborg Scripting Language Advanced Customization - Participant's Guide

Tracing paragraphs within a program—TRACE verbs, continued

Note:

Optimal version of using the trace verbs to run a trace against a select employee
or employees:

P 1A-RPT 00210 IF EMPLOYEE-NUMBER EQUAL "1234° OR "3001°
TRACE-ON
P 1A-RPT 00220 ELSE TRACE-OFF RETURN.

If you only want to test the report by running against a sample set of employees, use the
following code.

At the top of the program, initialize a counter field:

P 1A-RPT 00210 |IF W6-01-035 EQUAL "F*
P 1A-RPT 00220 MOVE :0 TO PERM-01-VO.

Then loop through the program for as many times as seems appropriate:

1A-RPT 00210 IF PERM-01-VO GREATER THAN :100"

1A-RPT 00220 SET WORK TO :7

1A-RPT 00240 MOVE "X*" TO WORK

1A-RPT 00260 RETURN.

1A-RPT 00270 CALCULATE PERM-01-VO + -1 = PERM-01-VO.
1A-RPT 00280 TRACE-ON.

W TUVTVTTTTO

The program will process the first 100 employees on FILEO2 for the Control-1-2
specified on the RUNC12 form.

The first 100 employees will be processed, not necessarily the first 100 employees
who meet the selection criteria of the program.

After the program counter reaches 100, the program will terminate.

228

Appendix C: The TRACE Utility

Additional trace tips

Insert a new paragraph label in the program code after the TRACE-ON verb, but
just before the area where the suspect code is. This makes finding the specific
area in the trace output much easier. If you use an editor program to view the
trace output, you can perform a find on the phrase ‘LABEL XXX’. Imbed three
blank spaces between the word LABEL and the label number, to move the editor
program to the beginning of the label area.

Trace output often indicates that a MOVE is being performed but does not show
the value that is being moved. A way to get around this and to be able to see the
actual value is to create a dummy IF sentence that will never be valid in the
program using the value in question. Review the following example:

P 1A-RPT 00210 MOVE RATING-VALUE TO W8-01-900.
P 1A-RPT 00220 IF W8-01-900 EQUAL "Q-
P 1A-RPT 00240 GO TO P90OO-RETURN.

Sometimes you need to know the value in a field or working storage space but no
part of the original code is manipulating the value, therefore nothing shows up in

the trace. Again, insert a dummy statement in the program after the trace has been
started, such as:

P 1A-RPT 00210 MOVE W8-01-800 TO W8-01-800.

When you use an editor to read the trace output, you can search for paragraph
labels in the output by performing a find on phrase ‘LABEL XXX’ (where XXX
is the paragraph number, P100, for example). There must be three spaces between
the word ‘LABEL’ and the “XXX* paragraph number.

Tracing a CSL form program

Everything you have just learned will help you read a trace listing of a CSL form,
however, there are three unique characteristics to keep in mind:

1. The first characteristic of tracing a GUI form is that the form program
generally executes multiple times even though it appears to execute only once
to the user. The first time through, the CSL code is typically creating an empty
entry form while the second pass is typically accepting the values entered by
the user and doing edit check routines.

2. A second characteristic is that some of the CSL code being executed is
generated (Object type P/G or EL Source-Generated) based on the SAT
(Solution Series Form Appearance Table, Object type P/S or Screen ltems
Table) when you RELOAD the form. The code generated differs, for instance,
if a field is specified as an inquiry field as opposed to an entry field. A switch
to generated code is indicated in the main CSL program when you see
SCREEN-SECTION-x where the x is a number from 0 to 9. Screen section 0
is usually the line displaying the form title, and for employee level forms, the
employee number. Screen section 1 is usually the main entry form, and section
8 is usually the inquiry form display.

3. A third characteristic is that paragraphs may be executed either before or after
a display or entry field, based on the (.SAT) Solution Series Form Appearance

229

Cyborg Scripting Language Advanced Customization - Participant's Guide

Table. That means there may not be a PERFORM statement in the base form
program (Object type P/ - P/space - or EL Source) because it is executed by the
generated code.

230

Appendix C: The TRACE Utility

Reading the TRACE output

Column 1

This column indicates the program being traced including the CSL program and
the CYB programs (if TRACE is allowed to run through to the end).

Column 2

This column indicates the relative displacement into that specific program (CSL
generator).

Column 3

This column indicates the type of instruction being executed. For example,
MOVE, FIND, IF.

Column 4
This column is the trace of the instruction.

1 2 3 4

1A-RPT 16 10 1IF 1A-RPT = REPORT
1A-RPT 28 21 LABEL 200

1A-RPT 40 24 MOVE Y

1A-RPT 51 24 MOVE 202E10

1A-RPT 63 24 MOVE LzC

1A-RPT 64 07 SET PTR 36 TO 1ST

1A-RPT 71 30 SEARCH LZC202E10 --LzC215D17
1A-RPT 72 09 IF LZC202E10 LESS THAN LZC202E10
1A-RPT 82 13 IF LZC NOT = LzC
1A-RPT 95 13 IF O NOT = 0

1A-RPT 114 07 SET PTR 36 TO SAVE
1A-RPT 117 21 LABEL 300

1A-RPT 120 04 MOVE 11A-R
1A-RPT 128 04 MOVE 99

1A-RPT 133 04 MOVE 9999

1A-RPT 138 04 MOVE MEYER JUNE
1A-RPT 143 04 MOVE 1001

1A-RPT 147 04 MOVE 1

1A-RPT 151 04 MOVE MEYER JUNE
1A-RPT 156 04 MOVE 1001

1A-RPT 170 24 MOVE 202E10
1A-RPT 182 24 MOVE LZR

1A-RPT 183 07 SET PTR 36 TO 1ST

1A-RPT 190 30 SEARCH LZR202E10 --LZR215D17
1A-RPT 191 09 |IF LZR215D17 LESS THAN LZR202E10
1A-RPT 201 13 IF LZR NOT= LZR

1A-RPT 212 04 MOVE 3388448855086608
1A-RPT 216 04 MOVE 11TH-4040
1A-RPT 220 07 SET PTR 36 TO SAVE

1A-RPT 227 20 CALC 19840915 19840915 VOO
1A-RPT 230 20 EDIT 19840915 19840915 V0O
1A-RPT 233 04 MOVE 01

1A-RPT 241 35 INQUIRY 1
1A-RPT 303 20 CALC 1 1 V0o

1A-RPT 311 20 =

1A-RPT 314 04 MOVE

1A-RPT 328 13 IF NOT =
1A-RPT 348 15 GO TO

1A-RPT 396 21 LABEL 99

1A-RPT 399 07 SET PTR 11 TO 1601

1A-RPT 409 24 MOVE 11A-R999999MEYER JUNE
1A-RPT 415 24 MOVE 01 338844885508660811TH-4040 09
1A-RPT 416 22 FILE15 WRITE STATUS 00
1A-RPT 419 07 SET PTR 11 TO 1601

1A-RPT 433 24 MOVE Y

1A-RPT 434 29 RETURN

231

Cyborg Scripting Language Advanced Customization - Participant's Guide

TRACE examples

Example 1

The following example illustrates how to use a trace in a report program for a
single employee. If the results are not what are expected, usually it is preferable to
trace a single employee who fits the criteria expected. This partial program selects
employees in union 629 and uses their pay-rate to do a table look up to determine

the monthly union dues amount.

These are table records on FILEO1L used in the following example:
WUD9999202L.280500 0300 00110 **Record that the program needs to read

WUD9999202L.280501 0300 00210
WUD9999202L.290500 0300 00110
WUD9999202L.290511 0300 00110
WUD99992021L.290524 0300 00110
WUD9999202L.310700 0500 00350

TS1~PT 00001 @LAST MODIFIED ON: 08-19-97 BY:

TS1~PT 00005

TS1~PT 00200 HEADER-1 :52 * LOCAL 629 UNION DUES
TS1~PT 00300 HEADER-2 :52 *
TS1~PT 00400 HEADER-3 :01 "EMPLOYEE CONTROL 3

TS1~PT 00500 HEADER-4 :01 *"NUMBER CODE
TS1~PT 00600 HEADER-3 :64 "DUES .
TS1~PT 00700 HEADER-4 :64 "RATE MESSAGE "

TS1~PT 00900 MOVE W7-30-176 TO W8-30-850.

TS1~PT 01500 MOVE PAY-RATE TO WORK-ANNUAL-SALARY.
TS1~PT 01600 READ-CONTROL-NUMBER.

TS1~PT 01700 MOVE *17WUD®" TO W7-05-008.

TS1~PT 01800 MOVE SALARY-GRADES TO W7-04-013.
TS1~PT 01900 MOVE W6-08-036 TO RING-SAVE-DATE.
TS1~PT 02000 MOVE RING-SAVE-DATE TO WORK-DATE.
TS1~PT 02100 MOVE WORK-DATE TO W7-06-017.

TS1~PT 02300 MOVE W8-04-726 TO W7-04-023.
TS1~PT 02400 READ-UNIQUE FILEO1.

WU UVUUTUUUUUUUUUUUUUUUUUUUUUOUOUUUUUUUUUUUUTUTUTU

TS1~PT 02500 IF STAT-KEY GREATER THAN "01°
TS1~PT 02600 RETURN.

TS1~PT 02700 IF STAT-KEY EQUAL "00*

TS1~PT 02710 TRACE-OFF

TS1~PT 02800 MOVE 000000 TO W8-06-724
TS1~PT 02900 MOVE W8-05-030 TO W8-05-725
TS1~PT 03000 PERFORM P500-SORT

TS1~PT 03100 PERFORM P700-UPDATE

TS1~PT 03200 PERFORM PG600-WRITE

TS1~PT 03300 RETURN.

TS1~PT 00000 SECURITY * ". @ Local 629 Union Dues Update
AUTHOR: PGMR
TS1~PT 00003 @THE UD~RPT will update the employee union dues HED with
TS1~PT 00004 @the appropriate amount from the UD~SCR table.

@

TS1~PT 02200 MOVE WORK-ANNUAL-SALARY TO WORK-AMT-5.

XHR

TS1~PT 00100 DEFINE-REPORT NO-PE-DATES NO-VERSION-NUMBER ALLOCATE-08.

EMPLOYEE*
NAME "

TS1~PT 00800 P100-INITIALIZE. @INITIALIZE COUNTERS HERE IF NEEDED.

@TEST SUBJECT

@GET PAY-RATE

TS1~PT 01000 IF SPACES EQUAL W6-08-036 RETURN.

TS1~PT 01100 P200-SELECT. @RECORD SELECTION LOGIC GOES HERE.
TS1~PT 01110 IF EMPLOYEE-NUMBER EQUAL "1234" TRACE-ON.
TS1~PT 01120 ELSE TRACE-OFF RETURN.

TS1~PT 01200 IF UNION-CODE NOT EQUAL "629" RETURN.

TS1~PT 01300 FIND PAY-RATE STARTING WITH "001°".

TS1~PT 01400 IF NOT FOUND RETURN.

@4 DECIMAL TO 2
@FIND CONTROL NUMBER
@KEY LENGTH OF 17

@DATE FROM PARAMETER
@CENTURY FORMAT

@w8-06-724

232

Appendix C: The TRACE Utility

TRACE examples, continued

000000

REST OF PROGRAM FOLLOWS

ALL LINES THAT BEGIN WITH "**" ARE COMMENTS FOR ILLUSTRATION ONLY AND
ARE NOT A PART OF THE TRACE

TRACE OUTPUT:

** CHECKING UNION CODE, Program line 01200

TS1~-PT 109 13

** FIND

TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT

** MOVE

TS1~PT
TS1~PT

** READ

TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT

IF 629 NOT = 629

PAY-RATE, Program line 01300 - 01400

114
126
138
149
150

08
24
24
30
13

SET PTR 32 TO 1ST

MOVE H

MOVE 001

SEARCH HOO1 --HOO01

IF HOO1 NOT = HOO1

PAY-RATE TO FIELD WITH 2 DECIMAL PLACES, Program line 01500

160
168

20
20

CONTROL

185
196
207
208
221
234
235

24
24
24
22
10
24
15

** BUILD KEY TO
Program

TS1~PT
TS1~PT
TS1~PT

268
279
290

24
24
24

CALC 50000 50000 V04
= 000000500
NUMBER AX-SCR, Program line 01600

MOVE 16TZAX
MOVE 999999

MOVE 202E13

FILEO1 READ-SINGLE STATUS 01 TZAX999999202E13
IF TZAX999999 = TZAX999999

MOVE TZAX999999274L31 999999999999

GO TO

READ FILEO1, LENGTH IN W7-02-008, REST STARTS IN W7-00-010,
lines 01700-01900

17wWUD
9999
19970104

** CHANGE DATE TO CENTURY AND READ FILEO1, Program lines 02000-02400

TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT
TS1~PT

296
304
317
323
331
344
345

20
20
24
20
20
24
22

CALC 19970104 19970104 VOO
= 202L.28

MOVE 202L28

CALC 500 500 VOO
= 000500

MOVE 0500

FILEO1 READ-UNIQUE STATUS 00 WUD9999202L280500

** CHECK STAT-KEY, Program lines 02500-02600

TS1~PT 358 11
TS1~-PT 373 10

IF 00 GREATER 01
IF 00 = 00

** TURN TRACE OFF, Program line 02700

TS1~-PT 385 24 MOVE

233

Cyborg Scripting Language Advanced Customization - Participant's Guide

TRACE examples, continued
Example 2

This program will read all active employees. If the employees previous Annual
Salary (the one before the current) is greater than thirty thousand dollars, a new
‘LB6’ segment is created for the employee and a report is created with that
information.

Problem

Even though the program uses MOVE-PLACE-TO HOLD1 and RESET-TO-
HOLD1-PLACE, the report shows the current annual salary instead of the second,
most recent, annual salary.

17~RPT 00000 SECURITY "HR". @ TEST PROGRAM XHR
17~RPT 00001 @LAST MODIFIED ON: 08-19-97 BY: S.O. AUTHOR:

17~RPT 00003 @Report 17~RPT reads the "LZM®" segment and creates a "LB6"
17~RPT 00004 @segment for active employees whose previous salary is
17~RPT 00006 @greater than $30,000.00

17~RPT 00100 DEFINE-REPORT NO-PE-DATES ALLOCATE-08 NO-VERSION-NUMBER.
17~RPT 00200 HEADER-1 :48 -~ TEST PROGRAM TITLE *.

17~RPT 00300 HEADER-2 :48 * .

17~RPT 00400 HEADER-3 :01 “EMPLOYEE EMPLOYEE PREVIOUS .
17~RPT 00500 HEADER-4 :01 “NUMBER NAME ANNUAL-SALARY " .
17~RPT 00600 P100-SELECTION.

17~RPT 00700 FIND RESULTING-EMP-STATUS.

17~RPT 00800 IF NOT FOUND RETURN.

17~RPT 00900 IF ACTIVITY-CODE NOT EQUAL "00" RETURN.

17~RPT 01000 FIND ANNUAL-SALARY.

17~RPT 01100 IF NOT FOUND RETURN.

17~RPT 01200 SET ANNUAL-SALARY UP

17~RPT 01300 IF L-CARD-CODE NOT EQUAL "ZF" RETURN.

17~RPT 01400 IF ANNUAL-SALARY NOT GREATER THAN :30000.00

17~RPT 01500 RETURN.

17~RPT 01600 PERORM P500-SORT.

17~RPT 01700 MOVE SALARY-CHANGE-TYPE TO W8-03-800.

17~RPT 01800 MOVE SALARY-EFFECTIVE TO SAVE-DATE.

17~RPT 01900 MOVE SAVE-DATE TO W8-06-810.

17~RPT 02000 MOVE-PLACE-TO-HOLD1.

17~RPT 02100 FIND RESTRICTION-DT-LB6 STARTING WITH W8-03-800.

17~RPT 02200 IF NOT FOUND

17~RPT 02300 INITIAL-SEGMENT-AREA

17~RPT 02400 MOVE *LB6" TO W8-03-000

17~RPT 02500 MOVE W8-03-800 TO W8-03-003

17~RPT 02600 MOVE W8-06-810 TO W8-06-006

17~RPT 02700 INSERT-L-SEGMENT

17~RPT 02800 MOVE *Y® TO RECORD-UPDATED.

17~RPT 02900 RESET-TO-HOLD1-PLACE.

17~RPT 03000 PERFORM P600-WRITE.

17~RPT 03100 RETURN.

17~RPT 03200 P500-SORT.

17~RPT 03300 SPACE-EXTRACT-RECORD.

17~RPT 03400 OUTPUT "117~R" FORMS/REPORT-CODE NO-PRINT-GRAND-TOTAL
17~RPT 03500 CONTROL-1-2 NO-PRINT-SUBTOTAL

17~RPT 03600 SORT-LENGTH-21 EMPLOYEE-NUMBER.

17~RPT 03700 EXIT.

17~RPT 03800 P600-WRITE

17~RPT 03900 PRINT "1" EMPLOYEE-NAME EMPLOYEE-NUMBER ANNUAL-SALARY
17~RPT 04000 WRITE-EXTRACT .

17~RPT 04100 EXIT.

WUV UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUTUTUTUTUTDO

234

Appendix C: The TRACE Utility

TRACE examples, continued
In order to find out why the current salary is always printing we can isolate one

employee, and in different places in the program move ANNUAL-SALARY to
WORK-ANNUAL-SALARY to see the result during the trace.

17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT
17~-RPT
17~RPT
17~RPT
17~RPT

WU UUUUUUUUUUUUUUUUUUUUUUUUUUUUUTUUUUUUUUUUUUUUUUUUUUTUTUTUTUTO

00000
00001
00003
00004
00006
00100
00200
00300
00400
00500
00600
00650
00655
00700
00800
00900
01000
01100
01110
01112
01200
01300
01400
01500
01510
01515
01600
01700
01800
01900
02000
02010
02015
02100
02200
02300
02400
02500
02600
02700
02800
02900
02910
02915
03000
03100
03200
03300
03400
03500
03600
03700
03800
03900
04000
04100

SECURITY "HR". @ TEST PROGRAM XHR
@LAST MODIFIED ON: 08-19-97 BY: S.O. AUTHOR:
@Report 17~RPT reads the "LZM® segment and creates a "LB6"
@segment for active employees whose previous salary is
@greater than $30,000.00

DEFINE-REPORT NO-PE-DATES ALLOCATE-08 NO-VERSION-NUMBER.

HEADER-1 :48 * TEST PROGRAM TITLE ~.
HEADER-2 :48 * ..
HEADER-3 :01 “EMPLOYEE EMPLOYEE PREVIOUS "
HEADER-4 :01 “NUMBER NAME ANNUAL-SALARY " .
P100-SELECTION.
IF EMPLOYEE-NUMBER EQUAL "002" TRACE-ON @1SOLATE
ELSE TRACE-OFF RETURN. @EMPLOYEE

FIND RESULTING-EMP-STATUS.
IF NOT FOUND RETURN.

IF ACTIVITY-CODE NOT EQUAL "00" RETURN.

FIND ANNUAL-SALARY.

IF NOT FOUND RETURN.

MOVE ***15T READ**" TO W8-15-900. @MARK PLACE
MOVE ANNUAL-SALARY TO WORK-ANNUAL-SALARY @IDENTIFY SALARY

SET ANNUAL-SALARY UP

IF L-CARD-CODE NOT EQUAL "ZF® RETURN.

IF ANNUAL-SALARY NOT GREATER THAN :30000.00
RETURN.

MOVE ***AFTER SET UP**" TO W8-18-900. @MARK PLACE
MOVE ANNUAL-SALARY TO WORK-ANNUAL-SALARY @IDENTIFY SALARY
PERFORM P500-SORT.

MOVE SALARY-CHANGE-TYPE TO W8-03-800.
MOVE SALARY-EFFECTIVE TO SAVE-DATE.
MOVE SAVE-DATE TO W8-06-810.
MOVE-PLACE-TO-HOLD1.

MOVE ***AFTER SAVE PLACE*** TO W8-22-900. @MARK PLACE
MOVE ANNUAL-SALARY TO WORK-ANNUAL-SALARY @IDENTIFY SALARY
FIND RESTRICTION-DT-LB6 STARTING WITH W8-03-800.

IF NOT FOUND
INITIAL-SEGMENT-AREA

MOVE "LB6" TO W8-03-000
MOVE W8-03-800 TO W8-03-003
MOVE W8-03-810 TO W8-03-006
INSERT-L-SEGMENT

MOVE "Y*®" TO RECORD-UPDATED.

RESET-TO-HOLD1-PLACE

MOVE ***AFTER RESET PLACE**" TO W8-22-900. @VMARK PLACE
MOVE ANNUAL-SALARY TO WORK-ANNUAL-SALARY @IDENTIFY SALARY
PERFORM P600-WRITE.

RETURN.
P500-SORT.
SPACE-EXTRACT-RECORD.

OUTPUT "117-R* FORMS/REPORT-CODE NO-PRINT-GRAND-TOTAL
CONTROL-1-2 NO-PRINT-SUBTOTAL
SORT-LENGTH-21 EMPLOYEE-NUMBER.

EXIT.

P600-WRITE.

PRINT *"1* EMPLOYEE-NAME EMPLOYEE-NUMBER ANNUAL-SALARY.

WRITE-EXTRACT.

EXIT.

235

Cyborg Scripting Language Advanced Customization - Participant's Guide

TRACE examples, continued

The trace

17~RPT 55
17~RPT 70
17~RPT 84
17~RPT 94
17~RPT 95
17~RPT 109
17~RPT 114
17~RPT 128
17~RPT 138
17~RPT 139
17~RPT 167
17~RPT 177
17~RPT 178
17~RPT 190
17~RPT 199
17~RPT 212
17~RPT 215
17~RPT 246
17~RPT 256
17~RPT 257
17~RPT 638
17~RPT 641
17~RPT 651
17~RPT 652
17~RPT 653
17~RPT 654
17~RPT 659
17~RPT 667
17~RPT 672
17~RPT 676
17~RPT 269
17~RPT 274
17~RPT 282
17~RPT 295
17~RPT 296
17~RPT 310
17~RPT 341
17~RPT 351
17~RPT 352
17~RPT 366
17~RPT 377
17~RPT 387
17~RPT 388
17~RPT 401
17~RPT 407
17~RPT 419
17~RPT 430
17~RPT 441
17~RPT 446
17~RPT 449
17~RPT 458
17~RPT 461
17~RPT 469
17~RPT 472
17~RPT 476
17~RPT 480
17~RPT 500
17~RPT 503
17~RPT 506

15
08
24
30
13
13
08
24
30
13
24
24
07
13
20
20

14
24
24
16
21
08
24
24
24
07
04
04
04
28
24
20
20
24
07
24
24
24
08
24
24
30
13
24
24
24
24
24
20
18
20
18
20
18
18
11
20
07
08

GO TO
SET PTR
MOVE
SEARCH
IF LZC
IF 00
SET PTR
MOVE
SEARCH
IF LZF
MOVE
MOVE
SET PTR
IF ZF
CALC
COMPARE

IF

MOVE
MOVE
PERFORM
LABEL
SET PTR
MOVE
MOVE
MOVE
SET PTR
MOVE
MOVE
MOVE
EXIT
MOVE
CALC

MOVE
SET PTR
MOVE
MOVE
MOVE
SET PTR
MOVE
MOVE
SEARCH
IF L04001
MOVE
MOVE
MOVE
MOVE
MOVE
CALC

+

+

CALC

+
COMPARE
IF

SET PTR
SET PTR

36 TO 1ST
LzC
LzC --LZC
NOT =
NOT =
36 TO 1ST
LZF
LZF --LZF
NOT =
** 1ST READ **
006000000
36 UP
NOT =
5000000
3000000

5000000 NOT GREATER 3000000

** AFTER SET UP **

0050000

500
11 7O

11 TO
117 R
999999
1002

AO02

841001
841001

5 T0
H

** AFTER SAVE PLACE **

0050000
36 TO
LB6
AO02
LB6A02

LB6

AO02

841001
28 6
15 7

36 5
28 7

00

1601

1601

3
00

1ST

NOT

5772

19841001

6

@@ FIND ACTIVITY LZC SEGMENT

LzC

00

LZF

@@ FIRST SALARY 60,000.00
@@ SET SALARY UP

ZF

5000000 V02
5000000 V02

@@ COMPARE TO 30,000.00

@@ 2ND MOST RECENT SALARY
@@ 50,000.00

19841001 VOO

@@ AFTER MOVE-PLACE-TO-HOLD1
@@ AMOUNT STILL 50,000.00

--L04001
= LB6A02
5701 5701
4149 9850
35 9885
0 9885
5701 5701
71 5772
24957 5772
GREATER

VOO
V0O
V0O
VOO
VOO
V0O
V0O

@@ FIND LB6 SEGMENT

24957

236

Appendix C: The TRACE Utility

TRACE examples, continued

17~-RPT 509 25 INSERT LB6A02841001 @@ FIND LB6 SEGMENT
17~RPT 510 18 CALC 36 5 71 71 VOO

17~RPT 514 18 = 5 4 0 71 VOO

17~RPT 518 07 SET PTR 5TO0 36

17~-RPT 523 21 LABEL 90

17~RPT 534 10 IF Y = Y

17~RPT 537 07 SET PTR 5 UP

17~RPT 540 18 CALC 54 71 71 VOO
17~-RPT 544 18 + 37 2 9884 9955 VOO
17~RPT 548 18 CALC 54 71 71 VOO

237

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

238

Glossary

Glossary

239

Cyborg Scripting Language Advanced Customization - Participant's Guide

ACTIVATE-OK-CANCEL

AUDIT-nn-FIELD

AUTO-HEADERS

BEGIN-ENTRY

The ACTIVATE-OK-CANCEL verb will activate the OK and CANCEL buttons
in a GUI environment.

ACTIVATE-OK-CANCEL.

The AUDIT-nn—FIELD verb causes an IS/WAS entry to be made in a table in
memory. It is generated by the Generate Code from Form Appearance Table
program (GENERS) as part of the code generated for a radio button.

B Before executing any of these verbs you must move the field name to W8-20—
402, the old value to W8-30-300, and the new value to W8-30-270.

AUDIT-COMPANY-FIELD. AUDIT-EMPLOYEE-FIELD.
AUDIT-OTHER-FIELD. AUDIT-TAX-FIELD.

The AUTO-HEADERS verb specifies that a field name should appear as a
heading on a form. AUTO-HEADERS automatically formats a field heading on a
form by using specifications on the Field Name Table. These specifications are
set by F-NAME when you add a new field to the system.

B Specify AUTO-HEADERS for each line of entry fields that you want
displayed on a form.
B The AUTO-HEADERS verb must precede the ENTRY or INQUIRY verb.

AUTO-HEADERS.

The BEGIN-ENTRY verb is used in conjunction with the ENTRY or INQUIRY
verb and paired with the END-ENTRY verb and is used to find a particular
segment occurrence in a multiple occurrence segment.

B BEGIN-ENTRY includes coding for AUTO-HEADERS and does not require
it to be coded.
B BEGIN-ENTRY must precede the ENTRY and INQUIRY verbs.

BEGIN-ENTRY.

BUTTON-ANSWER

BUTTON-GROUP

The BUTTON-ANSWER verb must be coded at the beginning of any program
that uses pushbuttons.

W This verb is coded just once at the beginning of the program.
BUTTON-ANSWER.

The BUTTON-GROUP is used, when a GUI is in use, to indicate that the
previous one—position field is to be replaced with a radio button. The current
value of the field (?Y' or ?N') determines whether or not it is selected. BUTTON-
GROUP moves ?%>' to the SCREEN area. A preceding PRINT statement must
move a button group number ?n’ to the SCREEN area. You may create up to ten
different groups of buttons (?n' = 0-9).

240

Glossary

W This is used with the BUTTON-ON and BUTTON-OFF verbs to create a
radio button.

BUTTON-ON
The BUTTON-ON and BUTTON-OFF verbs enable you to create a BUTTON-
OFF one—position entry field whose value is the contents of YES-NO.

BUTTON-ON If it is the first pass in a form, YES-NO field is set to ?Y",
otherwise WORK is moved to YES-NO.

BUTTON-OFF If it is the first pass in a form, YES-NO field is set to ?N’,
otherwise WORK is moved to YES-NO.

B This is used with the BUTTON-GROUP verb to create a radio button.
BUTTON-GROUP.

CHECKBOX
The CHECKBOX verb allows you to indicate that the previous one—position field
is to be replaced with a checkbox. The current value of the field (?Y"' or ?N’)
determines whether or not it is checked. CHECKBOX moves ?:>' to the SCREEN
area if a GUI-CLIENT is greater than a space. The GUI logic looks for the literal
?:>"and creates the checkbox.

B A checkbox should be used only for fields with a Yes/No value (?Y' or ?N').
CHECKBOX.

CONFIRM-EMP-SEG-ADD
The CONFIRM-EMP-SEG-ADD verb may be used to confirm that a segment
will be added to an employee record. This verb should be placed after all field and
relational edits have been performed. If a segment is not going to be added to an
employee record, warning message PPO12W will be displayed.

CONFIRM-EMP-SEG-ADD.

CURSOR-ACTION-CODE
The CURSOR-ACTION-CODE verb is used to place the cursor at the ACTION
field on the Command Line, when the form is built.

CURSOR-ACTION-CODE

CURSOR-ADDITIONAL
The CURSOR-ADDITIONAL verb is used to place the cursor at the
ADDITIONAL-KEY field on the Command Line, when the form is built.

CURSOR-ADDITIONAL

CURSOR-CODE-1
The CURSOR-CODE-1 verb is used to place the cursor at the CODE-1 field on
the Command Line, when the form is built.

CURSOR-CODE-1

241

Cyborg Scripting Language Advanced Customization - Participant's Guide

CURSOR-C1-2

CURSOR-MARK

The CURSOR-C1-2 verb is used to place the cursor at the CONTROL-1-2 field
on the Command Line, when the form is built.

CURSOR-C1-2

The CURSOR-MARK verb is used to place the cursor at the first entry field
found after an ENTRY verb, when the form is built. When used this verb must be
coded prior to the ENTRY command.

CURSOR-MARK

CURSOR-SCREEN-NAME

The CURSOR-SCREEN-NAME verb is used to place the cursor at the
PROGRAM field on the Command Line, when the form is built.

CURSOR-SCREEN-NAME

CURSOR-THIS-KEY

DASH-OFF

The CURSOR-THIS-KEY verb is used to place the cursor at the KEY field on
the Command Line, when the form is built.

CURSOR-THIS-KEY

The DASH-OFF verb is used to place a line of dashes across the form.
DASH-OFF

DISALLOW-DELETE

EMPTY-BOX

END-ENTRY

The DISALLOW-DELETE verb will gray the ‘Delete This Entry’ option found
under ‘Actions’. This will not stop the user from using ZDELETE to delete an
entry.

DISALLOW-DELETE.

The EMPTY-BOX verb is used immediately before an ENTRY verb for a single
field to cause the current field value to appear in the requested position.

B For pointer 42 fields, the default is EMPTY-BOX.
B For other pointers, the defaults are:

¢ VALUE-IN-BOX for converted forms, and
¢ VALUE-BELOW-BOX for unconverted forms.

The END-ENTRY verb is paired with the BEGIN-ENTRY verb to determine the
end of a forms Data Entry Line.

B BEGIN-ENTRY must follow the ENTRY and INQUIRY verbs for a Data
Entry Line.

END-ENTRY

242

Glossary

END-ITEM

END-LABEL

ENTRY

ERRORS-EXIST

The END-ITEM verb enables you to signal the end of the generated code for an
item. It is generated only if the SKIP-ITEM phrase was used for this item.

B This verb must be used with the SKIP-ITEM verb.
END-ITEM

The END-LABEL verb enables you to test the GUI switch. If a GUI is in use, it
will PRINT ?>'. This verb is used after a label is printed. It marks the end of the
label for the Windows program.

W This is used after a PRINT statement for a check box, group box, or radio
button.
END-LABEL

The ENTRY verb enables you to create fields that permit users to enter data on a
form. These fields are called data entry fields or unprotected fields. The ENTRY
verb also causes the current value for the field to be displayed beneath it, unless
the field is a Key field.

B Your program must execute an UPDATE verb before it executes the ENTRY
verb.

B If you include the optional AUTO-HEADERS and START-LINE verbs in
your program, they must be executed before the ENTRY verb.

W Place fields from different segments on separate lines unless they have the
same segment Key elements.

B Use the START-LINE and REPEAT verbs with the ENTRY verb if you want
the system to locate a stacked segment. Otherwise, the ENTRY verb assumes
that you are pointing to the correct segment and position in the record.

B Use the NEXT-LINE verb to mark the end of an ENTRY line.

The ERRORS-EXIST verb is used to check if any system level errors have
occurred. This verb checks to see if SCREEN-ERROR equals an '@ at sign.

IF ERRORS-EXIST
Imperative Statement . . .

243

Cyborg Scripting Language Advanced Customization - Participant's Guide

FIND

The FIND verb enables you to locate a specific occurrence of a segment.

B Follow a FIND statement with an IF FOUND or IF NOT-FOUND statement
to test the result of the FIND operation.

B Unless you use one of these valid qualifiers, FIND begins at the first segment
in the pointer.

B FROM HERE—Begins the FIND operation where the pointer is currently
positioned. Be sure that you know the position if you use this qualifier.

B STARTING WITH—Begins the FIND operation at a specified key value.

FORCE-OK-CANCEL

The FORCE-OK-CANCEL verb will activate the OK and CANCEL buttons in a
GUI environment and force the *Save Changes?’ prompt to appear.

FORCE-OK-CANCEL

FORMAT-CENTURY

The FORMAT-CENTURY verb is used to format the century of a date. This verb
should be used when you need to associate a century to a literal or a RUNREP
date, particularly a date that is to be used as a 21st century date. This verb will
assume that all dates that have a year within the range of 00-25 will be a 21st
century date. The date to be formatted with the century must be moved in to
WORK-DATE. Following the execution of FORMAT-CENTURY the new
formatted date will reside in WORK-DATE.

For example, if a date were used in a report and supplied to the report via the
RUNREP form and needed a 21st century reference, the coding may be as
follows:

MOVE SPECIAL-YYMMDD TO WORK-DATE.
FORMAT-CENTURY.
MOVE WORK-DATE TO SPECIAL-YYMMDD.

FORMAT-INTER-DATE

The FORMAT-INTER-DATE is used to convert a date stored in the YYMMDD
format into an internationally accepted format of DAY MONTH YEAR. As an
example, the date of January 1, 1999 would appear as 01 Jan 99 when printed on
a form or report. To convert a date into this format it is necessary to, first, move
the date into WORK-DATE and then execute the FORMAT-INTER-DATE
verb. The result will reside in INTERNATIONAL-DATE.

MOVE SPECIAL-YYMMDD TO WORK-DATE.
FORMAT-INTER-DATE.
PRINT INTERNATIONAL-DATE.

244

Glossary

FORMAT-INTER-DATE-CC

The FORMAT-INTER-DATE-CC is used to convert a date stored in the
YYMMDD format into an internationally accepted format of DAY MONTH
CENTURY YEAR. As an example, the date of January 1, 1999 would appear as
01 Jan 1999 when printed on a form or report. To convert a date into this format it
IS necessary to, first, move the date into WORK-DATE and then execute the
FORMAT-INTER-DATE-CC verb. The result will reside in INTERNATION-
DATE-CC.

MOVE SPECIAL-YYMMDD TO WORK-DATE.
FORMAT-INTER-DATE-CC.
PRINT INTERNATION-DATE-CC.

GO-TO-NEXT-SEGMENT

GRAYBUTTON

GUI-IN-USE

The GO-TO-NEXT-SEGMENT verb is used in forms that selectively display
inquiry records. If no occurrences have been selected the GO-TO-NEXT-
SEGMENT should be used.

Examples of this verb’s usage is in the activity forms (01-SCR, 04-SCR, 08—
SCR, 95-SCR and 96-SCR).

GO-TO-NEXT-SEGMENT.

The GRAYBUTTON verb, when a GUI is in use, allows you to indicate that the
previous two positions in the SCREEN area contain the ID number of a
pushbutton.

GRAYBUTTON moves ?@>' to the SCREEN area to signal the GUI logic to
create the pushbutton as a gray non—selected button.

B For a given form, each pushbutton must be assigned a unique 1D number.
B The pushbutton ID number must be in the range of 200" to ?19".

B The optional button label must not exceed 20 characters.
[

The size of the pushbutton is based on the size of the button label. If there is no
label, the button will be three columns wide and one row high. If the label is
one to ten characters in length the button will be ten columns wide and one
row high.

The IF GUI-IN-USE verb tests whether a graphical user interface (GUI) is in
use. It tests W7-01-458 for greater than a space. If true, it means that this user
has a graphical interface and the form is in graphics mode.

B This verb should be used only after the NEW-SCREEN-STYLE verb has been
executed, as that is when W7-01-458 is set to its proper value.

245

Cyborg Scripting Language Advanced Customization - Participant's Guide

GUI-ONLY

INDENTBOX

INQUIRY

The GUI-ONLY verb enables you to write a form which will not run in a non-
GUI environment. It tests W7-01-464 for greater than a space. If false, an error
message is displayed and a RETURN is executed.

B This verb should be placed after sequence #00010, but before all other Cyborg
Scripting Language/English Language (CSL/EL) statements.

The INDENTBOX allows you to indicate that the previous five characters in the
SCREEN area contain the height, width, and color of a rectangle that is to be
drawn. INDENTBOX moves ?,>' to the SCREEN area. The GUI logic looks for
the literal ?,>' and creates the rectangle.

W This verb should be used only when a GUI is in use.

B The 'hhwwc' represents the height (in rows), the width (in columns), and the
interior color of the rectangle. The rectangle is drawn with its upper left corner
replacing these four characters.

W The color values are:
0= transparent 5= yellow

1=red 6= light blue

2= green 7= reserved

3= blue 8= reserved

4= purple 9= entire rectangle is invisible (tab group)

The INQUIRY verb enables you to create protected, or display—only, fields.
These fields do not permit users to enter data in them. They generally display the
current or default value for the field.

B You can place up to 78 characters, including spaces, on each form line.

B The system must execute a READ or UPDATE verb before the INQUIRY

verb.

You can place both INQUIRY and ENTRY fields on the same form line.

If you do not want to display data from the first occurrence of a segment.

Precede the INQUIRY verb with a FIND statement.

Use the START-LINE/REPEAT verbs and precede the INQUIRY verb with

an ENTRY statement that contains all the key fields for the segment.

B Use INQUIRY-EMPLOYEE to display a name in last name, first name
format. Position the output in the first 48 positions on the form line to allow for
a name up to 30 characters long.

INQUIRY field—name-1 literal.field—hame-2...

246

Glossary

INQUIRY-MODE

The INQUIRY-MODE verb is used in an IF statement to check if the user
selected inquiry mode. If CODE-1 (W7-01-252) equals an 'I' a true condition
will be met.

IF INQUIRY-MODE
Imperative Statements. . .

NEW-SCREEN-STYLE
The NEW-SCREEN-STYLE verb signals the COBOL code ENTRY verb logic
that a non—key field may have the existing value of the field within the entry box.
It moves an ?N' to W7-01-460. This verb should be used in all new style forms,
that is, those using the Form Appearance Table (SAT). The switch at W7-01-460
is initialized to an ?0' by CYB90 before any form is called.

B This must be executed before any SCREEN-SECTION verbs.

NEXT-LINE

The NEXT-LINE verb marks the end of a formatted line and tells the system to
display that line on a terminal (output). It also acts as a carriage control indicator.

B End every form line with at least one NEXT—-LINE verb, including prompts,
entry and inquiry lines, and the Form Title.

B NEXT-LINE moves the form pointer to the beginning of the next form line.

B You can use NEXT-LINE to format a blank display line, or create double-
spacing between lines by repeating the NEXT-LINE verb.

NO-INQUIRY-SELECT
The NO-INQUIRY-SELECT verb is used in conjunction with the GO-TO-
NEXT-SEGMENT verb in the inquiry/selection (SCREEN-SECTION '8') of
certain forms. This verb will check to see if any lines have been displayed for this
section and if none have, the entry version of the form will be returned.

NO-INQUIRY-SELECT.

NO-SAVE-CANCEL
The NO-SAVE-CANCEL verb enables you to inactivate buttons labeled OK and
Cancel at the bottom of a form. It places an ?N' in column three of row two if a
GUI is in use. This signals the Windows code to not activate the ?0K' and
?Cancel’ buttons at the bottom of the form when anything is changed.

B This must be executed prior to exiting form.
B If using form—sections, this must be executed after the SCREEN-SECTION
verb.

247

Cyborg Scripting Language Advanced Customization - Participant's Guide

PRINT

PRINT-MESSAGE

PRINT-REJECT

PRINT-WARNING

PROCESS

The PRINT verb moves field data and literal values to Pointer 11 (SCREEN).
Unlike the OUTPUT verb, the PRINT verb edits fields according to the edit
length and edit routine specified on the Field Name Table.

B PRINT does not edit fields unless they have a specific edit length and edit
pattern.

B You can use PRINT to cause field headings and spaces between fields to
display on a form.

B If you use PRINT to move data, you must specify O in the PRINT TOTAL
field on the RTEDIT form.

The PRINT-MESSAGE verb is used to access and display memo messages.

The PRINT-REJECT verb is used to access and display reject and file error
messages.

The PRINT-WARNING verb is used to access and display warning messages.

The PROCESS verb enables you to establish a process loop. A process loop is a
series of statements that are executed repetitively. Process loops are an effective
way to check multiple—occurrence segments, because the PROCESS logic is
executed for each occurrence of a particular segment code.

B If you do not specify an optional qualifier, the PROCESS verb begins at the
first occurrence in the stack and continues until it processes all occurrences.
W Qualifiers restrict the process to specific start and end points. Valid qualifiers
are:
« FROM HERE—Begins processing where the pointer is positioned when
the program encounters the PROCESS verb.
o STARTING WITH—Begins processing at a specified key value.
« ENDING WITH—Ends processing at a specified key value.
B Do not execute a RETURN verb in a process loop.
B You can use the BYPASS-ENTRY verb in a process loop. This verb causes
processing to advance to the next occurrence.

248

Glossary

PUSHBUTTON
The PUSHBUTTON verb, when a GUI is in use, allows you to indicate that the
previous two positions in the SCREEN area contain the ID number of a
pushbutton. PUSHBUTTON moves ?;>' to the SCREEN area to signal the GUI
logic to create the pushbutton.

B For a given form, each pushbutton must be assigned a unique 1D number.
B The pushbutton ID number must be in the range of ?00' to ?19'".

B The optional button label must not exceed 20 characters.
[

The size of the pushbutton is based on the size of the button label. If there is no
label, the button will be three columns wide and one row high. If the label is
one to ten characters in length the button will be ten columns wide and one
row high.

QUERY-FIRST-PASS
The QUERY-FIRST-PASS verb is used with a conditional IF statement to
determine the timing for initialization or any preprocessing tasks.

QUERY-HEADERS
The QUERY-HEADERS verb instructs the program to use default heading
information for the fields as defined on the Field Name Table. If used this verb
must be specified before any fields are displayed on the form.

B The headings are not painted until the INQUIRY verb is used.

QUERY-ONLY
The QUERY-ONLY verb instructs the system to inhibit execution of the program
to only the QUERY Facility. This statement should be the first command coded in
a query program.

RAISEDBOX

The RAISEDBOX allows you to indicate that the previous five characters in the
SCREEN area contain the height, width, and color of a raised rectangle that is to
be drawn.

B This verb should be used only when a GUI is in use.

B The 'hhwwc' represents the height (in rows), the width (in columns), and the
interior color of the rectangle. The rectangle is drawn with its upper left corner
replacing these four characters.

B See INDENTBOX for color values.

READ-COMPANY
The READ-COMPANY verb is used to read the company record data into
working storage, and allow inquiry of the data. READ-COMPANY uses the data
in the CONTROL-1-2 field as the Key to the record.

READ-EMPLOYEE
The READ-EMPLOYEE verb is used to read the employee record data into
working storage, and allow inquiry of the data. READ-EMPLOYEE uses the data
in the CONTROL-1-2 field and KEY field as the Key to the record.

249

Cyborg Scripting Language Advanced Customization - Participant's Guide

READ-TAXES
The READ-TAXES is used to read the tax record into working storage, and allow
for inquiry of the data. READ-TAXES uses the data in the CONTROL-1-2 field
and KEY field as the Key to the record.

RECTANGLE

The RECTANGLE verb allows you to indicate that the previous four characters
in the SCREEN area contain the height and width of a group box that is to be
drawn. RECTANGLE moves ?!1>' to the SCREEN area. The GUI logic looks for
the literal ?1>" and creates the group box.

W This verb should be used only when a GUI is in use.

B The ?hhww' represents the height (in rows) and the width (in columns) of the
rectangle. The rectangle is drawn with its upper left corner replacing these four
characters.

B To label the group box, follow the RECTANGLE verb with a PRINT
statement for a literal ending with a greater than (>) symbol. The first position
of the literal must not be a space.

REPEAT :n TIMES
The START-LINE/REPEAT :n TIMES verb combination:

Indicates the start of a line of form fields.

Locates the correct segment in a FILEO2 record.

Specifies the number of times that a line of data should be repeated on a form.
Determines the end of a line of fields to be displayed on a form.

If you do not use the START-LINE/REPEAT :n TIMES verb combination, the
ENTRY or INQUIRY verb assumes that you are pointed at the correct segment
and position in the FILEQ2.

To produce a single form line, code REPEAT :0 TIMES to end the form line.
The code for each form line must end with at least one NEXT-LINE verb.

You can use the verb BEGIN-ENTRY in place of the AUTO-HEADERS and
START-LINE verb combination. END-ENTRY can replace REPEAT :n
TIMES.

RESET-RECORD-UPDATE

The RESET-RECORD-UPDATE verb is used to refresh a form. A space will be
moved into the RECORD-UPDATED switch (W7-01-097) and an 'S" will be
moved into the COMM-ACTION field (W7-01-301).

RESET-RECORD-UPDATE.

RESET-SCREEN-STYLE

The RESET-SCREEN-STYLE verb is used to reset a form to a non—-GUI form
after the NEW-SCREEN-STYLE verb has been used.

RESET-SCREEN-STYLE.

250

Glossary

SAVE-CANCEL

The SAVE-CANCEL verb enables you to activate buttons labeled OK and
Cancel at the bottom of a form. It places an ?S" in column three of row two if a
GUIl is in use. This signals the Windows code to activate the ?OK' and ?Cancel’
buttons at the bottom of the form when anything is changed. The Generate Code
from Form Appearance Table program (GENERS) generates this verb for any
form section containing an ENTRY field.

B This must be executed prior to exiting form.

SCREEN-SECTION

The SCREEN-SECTION verb is used to display a specific section of a form that
was created using Form Builder. This command MUST be on its own line. No
other code can appear before or after this verb on the same line. This command
cannot be used within an IF statement.

SCREEN-SECTION 'X'. 'X' represents the form section from the Form Builder.

SELECTION-MODE

SET SCREEN

SET-2ND-PANEL

SET-AUTO-KEY

The SELECTION-MODE verb is used in an IF statement to check if the user
selected the selection mode. If AUTO-KEY-SWITCH (W7-01-448) equals a 'Z'
a true condition will be met.

IF SELECTION-MODE
Imperative Statement . . .

The SET SCREEN TO :nn verb changes the current or active address TO :nn of
Pointer 11 (SCREEN).

W Positions are counted relative to one (1).
B SET manipulates the fields on the Pointer Table. Therefore, it is important to
know where to position the address before you code the SET statement.

The SET-2ND-PANEL-UPDATE verb is used in multi panel-UPDATE forms.
This verb will force the 2nd panel to update and return the 2nd panel form to the
terminal.

SET-2ND-PANEL-UPDATE.

The SET-AUTO-KEY verb will move a "Y' to W7-01-448. This verb is used in
forms that have no key fields to insure the data entered for one employee is not
passed to the next employee. This verb should be executed in the prompts
paragraph.

SET-AUTO-KEY.

251

Cyborg Scripting Language Advanced Customization - Participant's Guide

SET-FIELD-ERROR

The SET-FIELD-ERROR verb is used during the field error subroutine. If an
error is to be produced by the FIELD-EDIT-ROUTINE this verb sets the
indicators to display the message.

This verb moves an '@' at sign into SCREEN-ERROR, W8-01-480, and W8-
01-330.

SET-FIELD-ERROR.

SET-FOR-MESSAGES

SET-GRAY

SET-NORMAL

SET-PGxx-y

SET-PGDN-OFF

The SET-FOR-MESSAGES verb issues 0, 1, or 2 NEXT-LINES, depending on
how close to line 24 you are. You should issue it just before any relational edits
are done which might cause error messages. When SET-FOR-MESSAGES is
used, the position at which the printed message will appear is set at 0, 1 or 2 lines
below the last form field. The number of lines depends on how much room is left
on the form after the last field.

B This is used after an ENTRY verb or a SCREEN-SECTION containing an
ENTRY verb.

The SET-GRAY verb moves ?@' to BUTTON-STATE (W8-01-394).
B These verbs are used to set the state of a user defined pushbutton.

The SET-NORMAL verb moves ?;' to BUTTON-STATE (W8-01-394).
B These verbs are used to set the state of a user defined pushbutton.

SET-PGxx-y is a group of verbs where ?xx’ is either UP or DN, and ?y' is either
GRAY or NORMAL. The use of one of these verbs forces a PGUP or PGDN
button on the button bar to an ?on’ (normal) or ?off' (gray) setting.

W Typically, these would not be used; the GENERS8 program would
automatically generate the SET-nn—-UPDN verbs.

W If used, these would be used only to code utilities. They would not be used for
standard forms, that is, employee— or company-level form.

The SET-PGDN-GRAY verb sets column one of line two to a ?G'.
The SET-PGDN-NORMAL verb sets column one of line two to a ?Y".
The SET-PGUP-GRAY verb sets column two of line two to a ?G'.
The SET-PGUP-NORMAL verb sets column two of line two to a ?Y".

The SET-PGDN-OFF verb will set the left arrow button into a non—selective
state.
SET-PGDN-OFF.

252

Glossary

SET-PGUP-OFF

The SET-PGUP-OFF verb will set the right arrow button into a non-selective
state.
SET-PGUP-OFF.

SET-SCREEN-TO-ENTRY

The SET-SCREEN-TO-ENTRY verb forces the form into entry mode.
SET-SCREEN-TO-ENTRY.

SET-SCREEN-TO-INQRY

SET-nn-UPDN

SKIP-ITEM

SPACE-OVER :nn

The SET-SCREEN-TO-INQRY verb forces the form into inquiry mode.
SET-SCREEN-TO-INQRY.

SET-nn-UPDN is a group of verbs where ?nn' is the number of a pointer for an
application segment which can occur multiple times.

The Generate Code from Form Appearance Table program (GENERS) generates
this verb after the 7REPEAT :0 TIMES' verb. It determines if there are additional
segments of the same type, both up and down from the current occurrence. Then,
if a GUI is in use and there is more than a single occurrence, columns one and
two of the second line of the form are set to ?Y' (normal) or ?G' (gray). The
Windows logic will generate pushbuttons labeled Page Up, Page Down, and
Select. If column two of line two is a ?G' the Page Up button will be grayed.

If the program contains more than one page, the PGDN button will be normal
when a page other than the last page is displayed. The PGUP button will be
normal when a page other than the first page is displayed.

B The GENERS program automatically generates this.

The IF [condition] SKIP-ITEM verb allows control to be transferred down to the
next END-ITEM statement. The Generate Code from Form Appearance Table
program (GENERS) generates this verb.

B This verb may be used to skip over form formatting and positioning verbs such
as ENTRY, PRINT, and SET SCREEN. It is not recommended as a way of
skipping over other types of verbs.

The SPACE-OVER :nn verb moves the specified number of spaces to Pointer 11
(SCREEN).

B :nnis a two—digit numeric literal value from 01 through 60.

253

Cyborg Scripting Language Advanced Customization - Participant's Guide

START-LINE

The START-LINE/REPEAT :n TIMES verb combination:

B Indicates the start of a line of form fields.

Locates the correct segment in a FILEO2 record.

Specifies the number of times that a line of data should be repeated on a form.
Determines the end of a line of fields to be displayed on a form.

If you do not use the START-LINE/REPEAT :n TIMES verb combination, the
ENTRY or INQUIRY verb assumes that you are pointed at the correct segment
and position in the FILEQ2.

To produce a single form line, code REPEAT :0 TIMES to end the form line.
B The code for each form line must end with at least one NEXT-LINE verb.

B You can use the verb BEGIN-ENTRY in place of the AUTO-HEADERS and
START-LINE verb combination. END-ENTRY can replace REPEAT :n
TIMES.

STORE-INQUIRY-ONLY

The STORE-INQUIRY-ONLY verb will move the content of the COMM-
CHAR field (W7-01-298) in to W6-01-298. It is used to test for an inquiry only
condition when executing a table form.

STORE-INQUIRY-ONLY.

TIME-TO-PRINT-TITLE

The TIME-TO-PRINT-TITLE verb is used with a conditional IF statement to
determine the timing for printing the Query Title at the top of each form.

UPDATE-COMPANY

The UPDATE-COMPANY verb is used to read the company record data into
working storage, and allow updating of the data. UPDATE-COMPANY uses the
data in the CONTROL-1-2 field as the Key to the record.

UPDATE-EMPLOYEE

UPDATE-TAXES

The UPDATE-EMPLOYEE verb is used to read the employee record data into
working storage, and allow updating of the data. UPDATE-EMPLOYEE uses the
data in the CONTROL-1-2 field and KEY field as the Key to the record.

The UPDATE-TAXES verb is used to read the tax record into working storage,
and allow updating of the data. UPDATE-TAXES uses the data in the
CONTROL-1-2 field and KEY field as the Key to the record.

254

Glossary

USER-BUTTON

The USERBUTTON verb, when a GUI is in use, allows you to indicate that the
previous two positions in the SCREEN area contain the ID number of a
pushbutton. USERBUTTON moves BUTTON-STATE followed by ?>' to the
SCREEN area to signal the GUI logic to create the pushbutton.

B For a given form, each pushbutton must be assigned a unique 1D number.

The pushbutton ID number must be in the range of 700" to ?19'.

The optional button label must not exceed 20 characters.

The size of the pushbutton is based on the size of the button label. If there is no
label, the button will be three columns wide and one row high. If the label is
one to ten characters in length the button will be ten columns wide and one
row high.

VALUE-BELOW-BOX

VALUE-IN-BOX

The VALUE-BELOW-BOX verb is used immediately before an ENTRY verb
for a single field to cause the current field value to appear in the requested
position.

B For pointer 42 fields, the default is EMPTY-BOX.
B For other pointers, the defaults are:

e VALUE-IN-BOX for converted forms, and
¢ VALUE-BELOW-BOX for unconverted forms.

VALUE-BELOW-BOX.ENTRY field-name-1 literal...field-name—-2...

The VALUE-IN-BOX verb is used immediately before an ENTRY verb for a
single field to cause the current field value to appear in the requested position.

B For pointer 42 fields, the default is EMPTY-BOX.
B For other pointers, the defaults are:

¢ VALUE-IN-BOX for converted forms, and
¢ VALUE-BELOW-BOX for unconverted forms.
VALUE-BELOW-BOX. ENTRY field-name-1 literal field—-name-2...

WARNINGS-EXIST

The WARNINGS-EXIST verb is used to check if any warnings exist. This verb
will check if SCREEN-WARNING (W7-01-096) equals a 'W'.

IF WARNINGS-EXIST
Imperative Statement . . .

255

Cyborg Scripting Language Advanced Customization - Participant's Guide

NOTES

256

Index

Index

257

Index

AT RECOMAS ... 206
‘B’ Records

‘C’ Records

B D R ot T (o [R 207
‘ECM’ RECOIAS.....ccvveiviiieie et 208
‘F’ Records

“MCL’ RECOIAS.....ccvviivicieiecieectee et 209
‘Other” RECOIASc.eovveeieieiieecree et 217
‘P’ Records

B Sl O = (- To7 0] o U 211
B D R oo (o U 212
‘PE’ Records

B 2 {=To 0] o U 213
“Q7 RECOMS ..ottt 213
B R (=To 0] o U 213
‘RQM’, ‘RRM’, ‘RSM’, and ‘RXM’ Records......214
B O I Tl o T o U 214
‘T’ Records

B A o Tolo T (o [U

CZL7 RECOMAS oot
5M-RP program

Activating user-defined files.........c.ccoovviniinnnnns 195
Applying the transaction fileccccovniennnns 135
AUdit RECOS ..o 218
Batch transaction updatingcc.ccecevueiennnn. 135
BATCHL Program..........cccccevvieieneesenienieneenens 135
Bypass employees

Bypass EMpIOYEEs..........coceviieiiiiiiiineiceens
CALC—CODE=SETccccettiriniirireieieenenenenisnenenes
Calculation option list

Calling option list [0gICcccovviriiiiiiiiciee 67
CLOSE ..ottt
Company Records

Compile calc option list.........cccoireieieiiiininee, 65
Compile Calculation Code Set form (RECALC)... 65
Compile Edit Code Set form (REEDIT)................ 65
Compile edit option listccocoviriieiiiiiiiciee, 65
Compiling option list [0giC.........ccccviririniiianne 65
Course introductionccoeeveieieneieneeeee s 3
Course [0giStiCSccovrerieriiieecireseeeee e 5
Course MaterialSoevvrvvererieieesese e 7
Create A Read Verb form (RDVERB) 27
Creating option list 10giCcccoovevvriienirienn, 61
Custom READ— VerbScccovviiiininiinceee 27
DELETE ...coiiiiieiireece e
DELETE rules

DELETE-GLOBALcccooomiiiiiiiininieeieiceeen, 47
Deleting a segmentcccooeeviiineneneieens 131
Deleting records..........covveerenernieienesese e 45
Display System Control Repository utility (DSP01)107
Edit Utility (EDIT) ..cooeiiiiicceeerseeciceene
EDIT-CODE-SET

Employee Databaseccoeveievvinencncncee
Employee Database Key Structure(s)........c.cccee.... 216

Employee RecOrdsccocovvrvveneinieeseniesenen 217
Entry mode designccoovvviinineieie e 101
Executable Code ReCOrdS..........covvvveivriverincenas 218

Executing TRACE ... 224
EXract Programccoceeevieiieneniienineeniens 149, 153
Field Name/Maintenance utility (F-NAME) 87
Filg QCCESS ..ovveviieicieeie et 37
FILEO1 READ- verb29, 109
FILEOL repOrtsScoceveieiiiirenceescee e 163

FILEQZ2 @lternatecooveveeevieicreecee e 23
FILEO2 READ—VErD ...ccvoeviiiiiieeeie e 29

FILE23 ... 199
FILE23 READ=Verbccoeeiiiiiciicce 29
FILE24 ... 201
FILE25 ..o 203
FOrm BodY ..o 101
FOrm design.....ccooeevieriieiiereee e 101

FOrm HEaderccoeveieiiece e 101
Form image layouts.........cccccevvveneiniee s 135
Form image transactionscccccoeveeserieneencnn. 135

Function of option listS........c..ccoceieviiiiiieiinee 59
Group delete.......ooevriiicc 47
INITIAL-SEGMENT-AREA verb........ccccccoune. 123
Input and output fUNCLIONS.........ocoovviiriiiice 13
Input only filesoovviiiii e 13
INPUt/OULPUL FIlEScvoiiiie e 13

INSERT FUIES ..ot 123
INSERT=VErDS ...cvoiiieiiiiiee e 123
INSERT-PTR36 BATCHccovviiiicircie 127
Key field designcocoveeiiiiiieie e 83
Key field Order ... 83
MUIti-part reCOrdS........covvivreeriiseeneeseeas 111

Multi-part table 1ayoutcccovvvviieiiiiiiee 81
Multiple employee format..........ccccoceoveiniineninnnnn. 153
On-line Pay Calc Records..........ccocovvevrvreninianns 217

OPEN ..ottt 33
Option list [0giC......ccoevveieieieese e 63
Option listS OVEIVIEWccocveieieiriciesiesieeenae 59

Other key fieldS.........oovviiiiice e 83

Output oNnly Files......cooveiiiiiie e 13
PLO0 ...t 155, 161
PLAD ..ot 161
P200 ...t 151, 155
P260 ... 155
Parameter Validation............ccccooeevviirniiiieinnns 157
Percentage of total report...........cccocevevencnne 149
Print Position Record (RTEDIT)........cc.cceuue 149, 153
Print report parameters

Random filescoovvvvvviiiiiiccieceece e,

Read status
READ- verb Utilityccccoovviviiieieeceseeee

READ-COMPANYcccooriririririiiiininnsieeenenens
READ-EMPLOYEE
READ-HISTORYc.ceoiiiriirrrieecii e
READ-HL ...cotiiiiiieeet e
Reading FILEO1
Reading FILEO2
Reading FILE23

259

Cyborg Scripting Language Advanced Customization - Participant's Guide

Reading files sequentially...........ccccoovvvvvineninnnn. 31
Reading random files..........cccoovvviiiiciniinnn, 17
Reading the TRACE output.........ccooevvvvniienienns 231
READ-LABOR

READ-TAXES
READ-UNIQUEccoceitireirisiisiee e
Recommended update technique.....
Record identifier.........ocoovviiienereeesc e
Record length........ccoovviviiiii e
Record retrieval random files
ReCOrd WRITE ..ot

Relational edit option list..........ccccooervriiviiiennenn
Report Generator RECOrdsccoovvvievenierieianns

Report schedule parameters.............ccoceeevenene.
REWRITE ..ot
REWrIte @ reCOrdccvevvvviviieiieicce e

Sample Program with TRACE verbs inserted227

SCIEEN EITON ..o
SCREEN work area...
Segment deletion ...,
Segment updatingcccocevereneiniineneeeeee
Select/Inquiry mode design
Sequential files ...,
SeSSIoN RECOTS.....c.vvvviiiciicicrcece s

Special ..o
Special print option paragraphs
Special Print Options Program

Special Print Program paragraphs...........c.ccccceue... 151
Standard SOrt ...
STAT-KEY ..ot
Supervisor read verb

System Control REpOSItOry.........ccccoveriveerreereeen. 15
System Control Repository Key Structure(s) 206
Table analysisccooverireiincieece e 79
Table data ..o 81
Table data requUIremMents..........ccccovveereiercennciennes 79
Table field definitions...........c..oerererrereone 87

Table identifier........cocooieiinice 81
Table key fieldS.......coevriiiiiiiie 81
Table layout

EXAMPIE...iieeeeee s 85
Table record layoutccccooeviiiieiiiiceee 81
TaX RECOIAS ..o 216
The Solution Series filescccoovvrveiicieneenn 13
The TRACE ULty ...cccveviiiriiiecceee 222
Time entry/Adjustment Transaction Records....... 219
TRACE batch example ..., 223
TRACE eXxamples........cccooiiriniiiineniieneeeeens 232
TRACE OULPUL ..o 222

TRACE output Optionscccooeeevineneeee, 222
TrACE TIPS vt 229
TRACE-OFF ...ttt 226

TRACE-ON ..ottt 226
Tracing a CSL form program........c..cceeeueeee. 229
Tracing a portion of the program—batch reports. 225
Tracing an entire program in batch 223
Tracing an entire program onlinec.cceeeeee. 224
Tracing paragraphs within a program—TRACE verbs
UNLOCK ..ottt 37
UNLOCK= VEIDS ...ocoovviiiiiciciccecsee 129
Unlocking files ..o, 37
UPDATE= VErDS ..o 129

User-defined files..........ccovverniiieiniicene 15
User-defined table entry formcoccovvene. 99
User-defined tables..........ccccoooviviiiiniinicincnn, 77
Variable SOrt ... 159
Verify form and fields........ccccoeiiiiiiniii 105

Verify table layout ... 107
WRITE ..ottt 39
WRITE= ..ot e 41
WRITE=VErDS ..o 129
WRITE-EXTRACT ...coctiiiiiiiriceieee e 41
WRITE=FILEL0......ccoiereiiininieieccieeeas 41,137

260

Cyborg Scripting Language Customization
Participant Guide

Document Issue: 5.0

C7BORG

Document Issue Status: Fifth Release

Document Issue Level: 5.0
Document Issue Date: June 2003
Software Version: 5.1
Copyright Notice

Copyright® 2003 by Cyborg Systems Inc. All rights reserved.

No part of this publication may be copied or distributed, transmitted, stored in a retrieval system or translated into
any human or computer language in any form or by any means, electronic, mechanical, magnetic, manual or
otherwise, or disclosed to third parties without the express written permission of Cyborg Systems, Inc.

Disclaimer

This document relates to the current published version of the product. Every effort has been made to supply
complete and accurate information. However, all information found herein is subject to change without
notice and Cyborg Systems, Inc. shall not be held accountable for any subsequent changes or
modifications made to the contents of this document.

All information contained herein is as accurate as is humanly possible. If any statement is unclear,
please contact Customer Support for clarification. No statement is intended to be vague or misleading.

Trademarks

Cyborg Systems® and eCyborg® and The Solution Series®
are registered trademarks of Cyborg Systems, Inc.

The ASP Solution™ is a trademark of Cyborg Systems, Inc.

All other names are trademarks or registered trademarks of their respective owners.

The
Solutior
Series cyborg

Cyborg Systems, Inc., Suite 1700, 120 South Riverside Plaza, Chicago, Illinois 60606-3911

Table of Contents

Contents

Contents

Section 1: Course Overview

Course introduction
Course logistics
Course materials

Section 2: Designing a Form

Overview

Form design applications and The Solution Series
Designing a new form
Starting the form design application
Naming the new form
Establishing modes
Designing the form
Creating the header
Creating the body
Tab sequence
Section 2 exercise 1
Select/Inquiry form section
Section 2 exercise 2
Section summary

Section 3: Customization Basics

Overview

The form design application and CSL
Form programming
Context-sensitive menu records
Extracting the form
Generating the form
Extracting the form in batch
Generating the form in batch
Section summary
Section 3 exercise

Cyborg Scripting Language Customization - Participant Guide

Section 4: Defining Fields 93
OVETVIEW ...ttt ette ettt e et et e et e s et e e bt e ateesbeessaeeaseessteens e e seesaseeseeanseesseenseeseesnseensseenseenssennns 95
The Solution Series fIeld TEPOTLSceciiiiieiieeie ettt eaeeesbeesaeense e 97
(@ ¢ 1 0 Feare) o1 102 0 §] XSRS 99
FAeld defiNItiONS ...c..veeeeiiieiie ettt ettt e e e et e e st e e e beeesabeeesabeeesaseeenaseeenneas 101
SECHION SUMIMATYeeiiiiiieiiieeiie et eite et e rtte et estte et e estteebeesaeeesseessseesseessseenseessseenseesnseeseessseanseens 127
NI (0 R o (S () TSRS 129

Section 5: User-Defined Segments 133
OVETVIEW ...ttt ettt ettt ettt e et e et e e et e e bt e esbeenbeeeabeenseesaseenseesaseenseessseenseensbesnseensseenseasnseanseens 135
User-defined SEZMENtS OVEIVIEWccuiiruiieiieiieeitiesiieeieeseteeteeseeeseessreeseessseesseessseesseesnseesseeanns 137
Data requIrements aNalySISueeecuieeiiieeiiieeiieeeiieeeteeeeeeeteeesaeeesbeeesbeeessbeeessseeesnseeennseeennnens 139
User-defined segment 1ayOutcooooiiiiiiiiiiiiicece et 141
User-defined field definitionscooueeiiieiiieiiieiieeieee ettt e 145
User-defined segment layout—continuation SEZMENt...........cccueeeruireerveeerieeerieeenieeeseeesereeeenes 153
User-defined entry fOIM.........ccuiiiiiiiiiie et et e et e s e e saaeeenneas 155
Verify user-defined definitions........c..cooeoiiiiiiiiiiiniiiiceee e 157
QueETry-related PrOZIAMScc.eeiiieiieeiieeiie ettt ettt et ettt et e ebeesseeesbeesateenseessseenseesseeenseanseens 161
SECLION SUMIMATY ...eeeuvieeiiieeitiieeitteeeriteeette e ettt e eteeeeteeesteeessseeessseeensseeesseesnsseeensseesnsseesnseesnnseesnns 167
SECLION 5 EXETCISE .eeeuvvieeiiieeiiieeitieeeiteeeetteeeteeesteeessteeassseeasseeasseeesseeassseessssaessseeeasseeessseesssseesnns 170

Section 6: Customization Basics Plus 173
OVETVIEW ...ttt eeiee ettt e ettt e ettt e et e e st e e sttt e essbeeesbeeaseteeensaeeensaeeassseeassseeasseeensseeensseesnnsaesanseeennseenns 175
PrO@ram PrOCESSINE. . ccuvieeeiiieiiie et e ettt e et e et e e ettt e e teeeeteeessteeessaaeessseeeesseeessseeeasseeensseeennseeennsens 177
FOIM MESSAZESeeieieeiiie ettt et e st e st e st e e sbe e e saneeeaeeas 179
Creating report parameter entry forms (RGMSTR)ccciiiiiiiiiiiiiiecceecee e 193
SECLION SUIMIMATY ...eeevvieeiiieeittieeitee et eeeette e ettt e etteeeteeesbeeessseeessseeessseeansseessseessseesnsseesseesnaseesnns 195
SECLION 6 EXETCISE .eeeuvvieeuriieeiiieetieeeiteeeeiteeesteeesreeessteeassseeasseeasseesssseeassseessssaessseeessseeessseesssseesnns 197

Section 7: Online Query Programming 199
OVETVIEW ...ttt eeiee ettt e ettt e ettt e et e e st e e sttt e essbeeesbeeaseteeensaeeensaeeassseeassseeasseeensseeensseesnnsaesanseeennseenns 201
QUETY PIOZIAMIMIIIEeeevveeetreeeteeeeitteesitteesteeessaeessseeessseeessseeessseeassseesssseessssessssseesssssesssseessseenns 203
Maintaining alternate KEYS......oouiiiiiiiiieiieeie ettt ettt et e 207
SECHION SUMIMATYeeiiiiiieiiieiie ettt eteeriteeteestteebeesteeebeesaaeesseessseesseesssaenseessseenseesnsaenseessseenseens 221
SECLION 7 EXETCISE veeeuvvieeuiieeeiieeeiteeeiteeeteeesteeesteeessteeassseeasseeasseeassesansseeasssesnsseeessseeensseesnnseesnns 223

Appendix A: Exercise Answers 225
SECHION 2 @XETCISE 1 1.uvieiiiiiieiiieitie ettt ettt et ettt e st e et e et e e bt e sabeebeeesseesseesnseessseenseassseenseens 226
SECLION 2 EXETCISE 2 ..vveeeuiieeeiiieeeiieeeieeeeteeeeteeesiteeestteeessteeesseeasseeassesanseeessseesnsseessnseesssseesnnseesnns 229
SECLION 3 EXETCISE veeeuvvieeiiieeiiieitieeetteeeiteeeeteeesteeessteeassseeassaeasseeasseeansseessssaessseeessseeessseesnsseesnns 233
SECLION 4 EXETCISE .eeeuvveeeiiieetiieiiteeeiteeeeteeesreeeebeeessseeessseeasseeassseassaeassseeasseeesseeessseeesssesesssesannns 234
SECHION 5 @XETCISE ..veeuveeeurieiieeiieitieettestteeittestteeteessteeseessteesseeasseeseesnseeseessseenssesnseessseanseasssesnseens 237
SECLION 6 EXETCISE .eeeuvvieeuiiieeiieeetieeeieeesteeeeteeesteeessteeasateeesseeesseeansseeansseeasssesasseesanseeennseesnnseesnns 245
NI 10 R S () PR 247

i

Table of Contents

Appendix B: Solution View 249
The new fields definition fOrM SEIIESceeecuiiriiiiiieiie ettt 251
SElECHING the ACHIONeiiiiiciiieiiecie ettt ettt ettt e bt sateebeesaeeebeeesbeesbeeesseesaessseesseessseenseens 253
Titling and describing the NEW fOTM..........ccooiiiiiiiiiiii e e 255
Defining the fIElAdScooeiiiiii et et 259
AcceSSING the NEW TOTMN......eciiiiiiiiiieiie ettt ettt et e te et eebeeseaesaaeenne 263
NEW fOIM SAMPLE ..coeneiiiiiiieeiie e et e et e et e e e bae e sabee e s abeeesabeeeenseeennne 265

Appendix C: Quick Solution—Technical Reference Guide 267
System Control Repository 0bJECt COACSuiruiiiiiiriiieiieiie ettt ettt see e 268
OPErating SYSTEIM COUCSecviiruiieiieriiieiiieiieeiteeeteeteesteeteessteeseessseeseessseesseessseeseessseeseesssensseens 269
Edit cOmMMAaNnd LIStc.uiiiiiiieiie ettt e e et e e e et e e enbeeennaeeenaeas 270

Appendix D: Pointer 7 Fields 275
POINET 7 FICLAS ..ot ettt et st e e e enaeas 276
Pointer 7 fields in poINter OTAET:cccuiiiiiiieeiie e e e saae e e 277
Pointer 7 fields in alphabetical Order:cooiiiiiiiiiiiiiie e 278
Pointer 7 field defiNItioNnScc.oeiiiiiiieiiecie ettt ettt e 279

Appendix E: Form Footers Using Section 9 289
Creating the SCTEEN TOOTEToiuiiiiiiiieie ettt ettt ettt e st e et e aeeebeeseen 291

Glossary 293

Index 311

iii

Cyborg Scripting Language Customization - Participant Guide

NOTES

iv

Section 1: Course Overview

Section 1: Course Overview

Table of Contents
COUTSE TNETOAUCTION. eeeaeens 3
(7070 {0 o4 1) & Uol USSR 5
COUTSE TNATETIALSeeeeeeeeeeee e e e e e e e e e e e e et eeaeee e e e e e e aaeeeeeeeeaaaeaaeeeaeeeeeaaaaaaaeaeeeeenaans 7

Cyborg Scripting Language Customization - Participant Guide

Course Introduction

= Purpose and benefits
= Audience

= Versions

= Prerequisites

s Goals

= Expectations

NOTES

Section 1: Course Overview

Course introduction

Purpose

This course will teach you the skills necessary to design Cyborg Scripting
Language (CSL) data entry programs.

Benefits

The benefit of learning this information is that you will acquire experience in
programming data entry programs.

Audience

This course has been designed for project team members or data processing

personnel who are responsible for creating data entry forms, online reports, and
user-defined fields.

Prerequisites
Before taking this course you should have completed the following Cyborg
courses:

m Using The Solution Series: Administrative Solutions
m Introduction to Cyborg Scripting Language

Goals
At the conclusion of this course you should be able to:

m Create online data entry forms for existing or user-defined fields.

m Create Cyborg Scripting Language programs to display lists of data on a screen
(Query).

Expectations
To achieve the goals of this course you should:

m Ask questions.

m Share examples of your own Cyborg-related experiences. This sharing of
information among participants enhances the learning process.

m Ask where to obtain additional information if you have an interest in a point
that is introduced.

Cyborg Scripting Language Customization - Participant Guide

Logistics

NOTES

Section 1: Course Overview

Course logistics

Use the space below and in the right column to take notes about the course
logistics.

Meals

Breaks

Telephones

Restrooms

Security questions

Cyborg Scripting Language Customization - Participant Guide

Course Materials

NOTES

Section 1: Course Overview

Course materials

Course materials

All form illustrations are shown for the Windows version of The Solution Series.
Instructions to access or complete a form are provided using Windows. Keyboard
(non-mouse) users can refer to the ‘Command:’ text under each step, where
applicable.

Table of contents
Each section has a table of contents listing on the section title page.

Text layout
This guide is designed in the following manner:

m Left pages typically contain copies of overhead transparencies or forms.

m Right pages contain information about the overhead transparency or form and
an area for your note taking.

Section exercise
Exercises give you an opportunity to practice what you have learned in each
section. All sections except the course overview section have exercises.

Appendixes
The appendixes are in the back of your participant guide and contain the
following:

m Exercise Answers—Answers to section exercises.

m Solution View—Creating A User-Defined Segment and Entry Form.
m Quick Solution—Technical Reference Guide.

m Pointer 7 Fields

m Form Footers Using Section 9

Glossary
Glossary and syntax for the CSL verbs.

Index
An alphabetical listing of content cross-referenced to page numbers.

Cyborg Scripting Language Customization - Participant Guide

NOTES

Section 2: Designing a Form

Section 2: Designing a Form

Table of Contents
OVETVIEW ..ttt ettt e h e et b e et e bt e eat e e bt e sate e bt e e a bt e bt e sab e e bt e eabeesbbeeabeenaneenne 11
Form design applications and The SOIUtion SETies.........cccceeciieriiiiriieeiieeeiie e 13
DeSiZNING @ NEW TOTTI.....c..iiiuiiiiiiiiieiee ettt et e ettt e st e st e e bt e sbeesabeesaaeenbeessseenseans 17
Starting the form design apPliCatiONcoeviiiiiieiieiie ittt e 19
Naming the NEW fOIMooiuiiiiiiiiecie ettt ettt e seb e e e e eabeebeessbeeseeenseenseessnas 21
EStabliShing MOAESceeiiiiieiiie ettt e ettt e e st e e s e e saaeeesnbeeessseeenneeens 25
Designing the fOTMoo.eiiiiiii ettt st ettt et et eeee 27
Creating the REAAETcuiiiiiiiiee e ettt et et e et e s b e eseeeaaeenne 29
Creating the DOAYccciiiiiiie et ettt et e saaeebeeesbe e saesabeesseeesseenseessseenns 33
TAD SEQUEIICE.eeiiiieeiiie ettt et e et e et e e e tteeetaeeessaeeessaeessseeeesseeesssaeeasseeensseeesseeesseesnnns 49
NI 10 I (S (6 2 SRR 51
Select/INQUITY fOTT SECEION........ccctieriieeiieciie ettt ettt ettt et et e et eesbeesteesabeeseeenbeessaesnbeenseesnnas 53
SECHION 2 EXETCISE 2 ...vieuvieutiiiietiete et sttt ettt e bt e e st e bt et e s bt ebeeatesaee bt eseeebee bt entesseenbeensesseeseensenns 59
SECLION SUMIMATY ...eeiiiieiiiieeiieeeetee et e ettt e et e e e tteesteeessteeessseeessseeessseeessseeenssesensseeesseesnsseessseesnssens 61

Cyborg Scripting Language Customization - Participant Guide

Objectives

» Identify the role a form design
application plays in the design and
development of a form program

» Identify and create form components
» Identify the purpose of form sections

= Use the form design application
to design a form

NOTES

10

Section 2: Designing a Form

Overview

Purpose

In this section, you will learn how to use a form design application to design a
form.

Objectives
When you complete this section, you will be able to:

m Identify the role the form design application plays in the design and
development of a form program.

m Identify and create The Solution Series form components:
e Header
o Body
e Select/Inquiry

m [dentify the purpose of sections.

m Use a form design application to design a form.

11

Cyborg Scripting Language Customization - Participant Guide

Form Design Applications

Form Builder

N
N
| Form Builder ‘

NS

SAT

%/' N\

| The Solution Series

NOTES

12

Section 2: Designing a Form

Form design applications and The Solution Series
Design applications and Cyborg Scripting Language
The Form Builder software is used in conjunction with Cyborg Scripting
Language (CSL) programming to create and maintain The Solution Series forms.

m Both design applications are visual programming tools that allow you to create
and maintain form attributes and layout.

m CSL is used to display the form design, validate the data entered into the form,
and update the database with the valid results.

The relationship between design applications and The Solution Series is the Form
Appearance Table (SAT) for each form.

m The Form Appearance Table contains the attributes and layout of a form.

m The Solution Series uses the Form Appearance Table to generate the CSL code
that displays the attributes and layout you create.

The focus of this section is to design a basic form with a Header, Body, and
Select/Inquiry.

& Refer to Section 3: Customization Basics for completion of the form development
process.

13

Cyborg Scripting Language Customization - Participant Guide

Entry Mode

| Company Earnings

HED=

ool

Description: REGUL AR P&y
—Pay On Wacation Pay
Category: Basic-Mormal Tax x|
' s
Frequency: Inactive =l Mo
Taxability: Fully Taxable L.
—Priority Owverride:
fale Method: 1Jse HED 001 Rate |
Permanent Order: 001 |
AmountsPercent: | Temporary Order: 001 |
TE-2 Hours: mat In LUse d TE-2 AmE: hot In Use d

| Mare Options

Select/Inquiry Mode

HED Description
| ool REGULAFR. PAY s
| ooz FUTURE RAISE I—
| 003 OVERTIME FaAY
| oo4 OVERTIME PAY
| oos EONUS
| 006 SICK PAY |
| oo7 TIPS
| oos WACATION
| oo HOL DAY
| 011 2ZND SHIFT PREM
| 012 IRD SHIFT PREM
| 013 15T SHIFT
| 015 EXPENSE 1
| 023 COMMISS 1ONS
| oz7 ANNUAL BONUS
| 034 TRANS SUBS 1DY
| 035 HOUS [NG aLLOW
| 044 CALEMD AR MEMO
1 047 FIlSCAL MEMO i

NOTES

14

Section 2: Designing a Form

Form design applications and The Solution Series, continued

Note:

Form sections

The Solution Series forms are divided into sections with each section containing a
specific portion of the form. Normally, The Solution Series forms are defined
using at least three sections, however more complex forms can be defined using
up to ten sections. Sections are used to create:

m Header—Section 0
m Form Body—Sections 1-7
m Select/Inquiry—Section 8

Section 9 may contain screen prompts that provide links to related screens.
Further information on Section 9 may be found in Appendix E: Form Footers
Using Section 9. Context-sensitive menus are recommended instead of prompts on
all new development.

Form display modes
There are two display modes that must be accounted for when designing a form.
The form display modes are:

m Entry mode—Displays the form with all fields displayed and ready for update:
e This is the mode when a form is initially displayed.

o This mode displays the same for single-occurrence and multiple-occurrence
segment forms.

m Select/Inquiry mode—Displays the form in one of two formats dependent on
whether there is one or multiple occurrences for the segment

e One Occurrence of the Segment—The form displays the same as entry
mode.

e Multiple Occurrences of the Segment—The form displays a summary of
each occurrence that can be selected for full form entry mode.

15

Cyborg Scripting Language Customization - Participant Guide

Steps to Designing a New Form

= Starting the form design application
= Naming the new form
= Designing the form

= Saving the form

NOTES

16

Section 2: Designing a Form

Designing a new form

Form design steps
The procedures to design a new form include:

m Starting the form design application
Form Builder is a Windows application.

m Naming the new form
The name of the form must be the same for both the form design application
and The Solution Series.

m Designing the form
The three primary activities in designing a form is to create the title, body, and
select/inquiry.

m Saving the form
The form design must be saved after development is complete.

17

Cyborg Scripting Language Customization - Participant Guide

Form Builder Window

ed)]

EEDEERERNE

NOTES

18

Section 2: Designing a Form

Starting the form design application
Start the form design application
To start the design application, select the Form Builder icon.

The design application window
The form design application window contains several components. These include:

= Menu Bar
m Workspace
m Button Bar
m Status Bar

Menu bar
The menu bar displays the form design application options.

m The File menu contains the New, Open, Save, Save As, Exit, and About
options.

m The Form menu contains the Sections 1-7 and View Composite options.

m The Mode menu contains the Character, Graphical, Bilingual, Primary Lang,
Alternate Lang, and Group Move options.

m The Add Control menu contains the items that can be selected to design a
Form.

Button bar

The button bar displays an Icon for each item that can be selected to design a
Form.

Workspace

The workspace is where you create or modify the form design. The workspace
corresponds to 80 columns (width) and rows 3 through 24 of a 24-row Form
(height). One row position is the size of a character.

Status bar

The status bar displays the type of item selected, its row and column position, the
language mode, a list of the sections developed, and the current section number.
The list of section numbers used will be grey if the section is not currently
displayed.

19

Cyborg Scripting Language Customization - Participant Guide

Form Parameters Dialog

Screen Name: IXPGM1

Repeating Lines: I_

Section Number: 1

¥ Headers

¥ Footers

Panel: |1_

Special Display: I_

Section Desc: I

Cancel |

Form Parameters I

Repeating Lines

Value
Blank

1-8

Action

Do not repeat this
section.

Repeat the entry and
inquiry fields 1-8
times dependent
upon the value.

Repeat the entry and
inquiry fields on all
remaining lines
(down to line 23).
This technique is
used in the
Select/Inquiry Form
section.

NOTES

20

Section 2: Designing a Form

Naming the new form

Before you can start designing your form, you must create name and form
parameters. From the form design application menu select one of the following:

In Form Builder, select the following from the menu:
File P> New
Result: The Form Parameters dialog is displayed.

Form name
This text box contains the name of the program used by The Solution Series. The
form name must not exceed six characters and should be all uppercase characters.

Repeating lines

This text box determines the number of times this section will be repeated. If you
want the selected section to have repeating lines of entry and inquiry fields enter
one of the values listed above in this field.

Headers
This check box determines whether the form design application will display
inquiry or entry fields that are marked as headers (Section 0).

Footers

This check box determines whether the form design application will display
inquiry or entry fields that are marked as footers (Section 9).

Section number

This field contains the form section you are editing.

21

Cyborg Scripting Language Customization - Participant Guide

Form Parameters Dialog

Screen Name: IXPGM1

Form Parameters I

Repeating Lines: I_

Section Number: 1

¥ Headers

¥ Footers

Panel: |1_

Special Display: I_

Section Desc: I

Cancel |

Country
Code Country
Blank Not Country specific
0 (0N
1 Canada
2 UK
3 Ireland (Erie)
4 Malaysia
5 Singapore
6 Australia

Value
Blank

Special Display

Description

Special Display not
applicable.

Form section requires the
special display limits.
Form section is a regular
display when another Form
section is defined as a
special display.

NOTES

22

Section 2: Designing a Form

Naming the new form, continued

Batch layout section header

The four remaining optional fields are used by the Batch Layout Report program
(BATCHL).

Panel

This text box is used by the Batch Layout program to determine if this is a multi-
panel form. A multi-panel form is one that contains a push button that will
produce a second or subsequent form.

Country

This text box determines if a form section is country specific. Leave this field
blank if the form section is not country-specific; otherwise enter a valid country
code.

Activity

This text box determines if there are different methods for processing the form.
Leave this field blank unless a form displays different sections for add and change
functions. If this is so, enter A for a section that is used for adding, or C for a
section used to make a change.

Special display

This text box is used to limit the number of entry fields that display on a
character-mode terminal. Some character-mode terminals cannot handle the
number of entry fields on some of The Solution Series forms.

Section description
This field is to describe the type of section, in other words, header, body, or
select/inquiry.

23

Cyborg Scripting Language Customization - Participant Guide

Form Builder Modes

Form Builder - [Unnamed)

Mode

NOTES

24

Section 2: Designing a Form

Establishing modes

Design application modes

The Form Builder application is used to develop The Solution Series forms by
users who interface using a Graphical User Interface (GUI), as well as those using
a text-based terminal. Additionally, these form design applications accommodate
two different languages per form: the primary language and an alternate language.

Before you start to develop a form, you will want to establish the mode in which
you use The Solution Series. In order to establish modes, complete one of the
following sets of steps:

In Form Builder, select the following from the menu:
Mode P> Graphical or Character
Result: Establishes the Solution Series interface.
Mode P> Bilingual or Primary Lang
Result: Establishes the language mode.
Mode P> Group Move
Result: Enables or disables the moving of a group boxes and contents.

25

Cyborg Scripting Language Customization - Participant Guide

Form Design Activities

s Create the header
= Create the body

» Create the select/inquiry

NOTES

26

Section 2: Designing a Form

Designing the form
Form design
The three primary activities in designing a form are:
m Creating the header
m Creating the body
m Creating the select/inquiry

The header

The form header provides a form title and other information regarding the form. If
the form is an employee level form, the employee’s name is displayed with the
form title.

The body

The form body provides either update or inquiry access to a field. Fields can be
represented as entry fields, inquiry fields, radio buttons, check boxes, or list
boxes.

Select/Inquiry
The select/inquiry component provides a summary of each occurrence of multiple
occurring segments that may then be selected for full display.

27

Cyborg Scripting Language Customization - Participant Guide

Form Title—Text Dialog

Form Builder - [Unnamed)

152] (el [=0| [E6]] [@)] [A (2]

Basic Employee Information

NOTES

28

Section 2: Designing a Form

Creating the header

The form header
As you recall, the form header provides a form title and other form information,
such as an employee name. The form header is defined in form section 0.

The form title
The form title is created using the text dialog box. In order to access the text
dialog box perform one of the following:

In Form Builder, click the Add Text button or select the following from the menu:
Add Control P> Text
Result: The Text dialog box displays.

Text field

This field is used to type up to 60 characters to display on the form builder
workspace. Cyborg form titles are a maximum of 38 characters, which
corresponds with the CSL title in sequence 00000.

When Shown buttons
The When Shown radio buttons are used to control the display of items based on
the mode.

Section
The Section field identifies a text item as being part of a header, footer, or form
body. Since the title is part of the form header, type 0 for the form section.

Completing the title

To complete the text dialog, fill in each field as needed to describe the form title.
Position the title starting in Row 3, Column 3 of the workspace using your
pointer.

29

Cyborg Scripting Language Customization - Participant Guide

Form Title—Display Dialog

=

EHMPLOYEE-HAHE

Form Title Example

Form Builder - [Unnamed)

2] | [+ B =] (@] [T (A 2

ee Information RERKEREANNNENENENANANNRNRRREL

NOTES

30

Section 2: Designing a Form

Creating the header, continued

Employee name
In order to include additional information, such as the employee name, complete
one of the following:

In Form Builder, click the Add Display Box button or select the following from
the menu:

Add Control P> Display Box
Result: The Display dialog box is displayed.
The display dialog
The display dialog contains the attributes of how a field will display on the form.
Data in these fields display on the form, but cannot be changed.

Field name

The field name identifies the data dictionary name to be used with the form item.
If you are not sure of the data dictionary name to include in the form item, you
may display a list of available field names by typing a question mark (?) and, if
possible, the beginning letters of the field name, into the field and choosing OK.

Label

The Label text box is used to identify the dialog box or inquiry field displayed on
the workspace. Though the form design application allows you to enter more than
20 characters in this text box, only the first 20 characters display.

Exit routines

The exit routines contain 3-digit CSL paragraph numbers. The numbers indicate
specific subroutines in the form program that are required to be executed before
or after this item is displayed.

When Shown buttons

The When Shown radio buttons are used to control the display of items based on
the mode.

Label location
The label location determines the placement in relation to the field.

Section
The section field identifies a text item as being part of a header, footer, or body.
Since the title is part of the heading, type a 0 in the section field.

Completing the name
To complete the dialog, fill in each field as needed to describe the employee
name. Position the name starting in row 3, column 49 of the workspace.

31

Cyborg Scripting Language Customization - Participant Guide

Single Column

Form Builder - DA-SCR.SAT

152 (e8] [=0 | [E6] (] [®)] (] (A [20)

Disciplinary Actions RERRENENANARNNNREREANNNRRRRELR

Form Builder - 15-5CR.SAT

EETIENE I SO NS

Emergency Medical Information hhthhbbhrtthrttrtttrthhrthhh b

NOTES

32

Section 2: Designing a Form

Creating the body

Form body layout
There are two basic layouts you can use for your form body:

m Single Column
= Double Column

Key fields
Regardless of the layout you choose in your form design, key fields must adhere
to the following rules:

m All key fields must be grouped together in segment layout order.
m Non-key data must follow the key fields.

m All key field labels will end with a greater than symbol (>) denoting that this
field is a key field.

= An empty row should exist between the last key field and the first non-key
field on the form, when possible.

Form body items
There are several classifications of fields within The Solution Series which
determine what items may be used in creating the form body.

Field Type Item Type

Date Entry or Inquiry Field

Numeric Entry or Inquiry Field

Name Entry or Inquiry Field

Alphanumeric Entry or Inquiry Field

Option List Text Box, Display Box, Option Button, List Box, or Check Box

The following pages discuss each item.

Note: Before starting to build your form body, you must change the form section to
Section 1.

33

Cyborg Scripting Language Customization - Participant Guide

Text Box Dialog

BIRTH-DATE
Birth Date

NOTES

34

Section 2: Designing a Form

Creating the body, continued

Text box dialog
A text box item is defined when the end-user must be able to type information
into a text box, such as an employee name or telephone number.

In Form Builder, click the Add Text Box button or select the following from the
menu:

Add Control P> Text Box
Result: The Text Box dialog is displayed.

Field name

The field name identifies the data dictionary name to be used with the form item.
If you are not sure of the data dictionary name to include in the form item, you
may display a list of available fields names by typing a question mark (?) and, if
possible, the first characters of the field name, in the field and choosing OK.

Label

The label text box is used to identify the dialog box displayed on the workspace.
Though form design application allows you to enter more than 20 characters in
this text box, only the first 20 characters display.

Section
The section field identifies a text item as being part of a header, footer, or body.
Type a one (1) in the Section field to define this as the form body.

Spin button

An up and down arrow is placed next to the text box so the end-user can either
type a number directly into the field or use the buttons to cycle from 00 to 99.
You may use a spin button only when the field name you enter:

m [s a one- or two-digit numeric field.
m Has no decimal places.
m [s not tied to an Option List.

35

Cyborg Scripting Language Customization - Participant Guide

Text Box Examples

Form Builder - [Unnamed]

152 [[=0 | [E8] (] [@®)] (] (A [20)

Entry Field Examples

NOTES

36

Section 2: Designing a Form

Creating the body, continued

When shown

The When Shown option buttons are used to control the display of items based on
the mode.

Exit routines

The exit routines contain 3-digit CSL paragraph numbers. The numbers indicate
specific subroutines in the form program that are required to be executed before
or after this item is displayed.

Label location

The label location determines the placement in relation to the field.

Current value
The current value determines the display of the field’s current value:

m Do Not Show
Do not display the current value of this field.

m Show Inside Box
Show the current value of this field in the box.

m Show Below Box
Show the current value of this field on the line below the box. When the new
data is entered, the old value is replaced.

Completing the text box

Complete the text box dialog. Position the field in the workspace using your
pointer.

37

Cyborg Scripting Language Customization - Participant Guide

List Box Dialog

List Box

Field Name: ISEX—[:I]DE

Label: IGender
Section: |1_
When Shown

Exit Routines Always
Before: I " Character Mode
After: I " Graphical Mode

[~ Big Codeset

~Label Location
" Mo Label

~ Left. Left Justified
& Left, Right Justified
~ Abowve, Left Justified

¢~ Abowve, Centered on 2 Lines

Delete | Cancel |

NOTES

38

Section 2: Designing a Form

Creating the body, continued

List box dialog

You can use a list box in place of a text box for any field that is validated against
an option list. Instead of entering the option list value in a text box, the user
selects a description from a list.

In Form Builder, click the Add List Box button or select the following from the
menu:

Add Control P> List Box
Result: The List Box dialog is displayed.

Field name

The field name identifies the data dictionary name to be used with the form item.
If you are not sure of the data dictionary name to include in the form item, you
may display a list of available field names by typing a question mark (?) and, if
possible, the first characters of the field name, into the field and choosing OK.

Label

The label text box is used to identify the dialog box displayed on the workspace.
Though form design application allows you to enter more than 20 characters in
this text box, only the first 20 characters display.

Section

The section field identifies a text item as being part of a header, footer, or form
body. Type a one (1) in the section field to define this as the form body.

Big option list

If an option list has more than 40 entries, select the big option list check box. This
allows the end-user to more easily search a large option list.

Label location
The label location determines the placement in relation to the field.

39

Cyborg Scripting Language Customization - Participant Guide

List Box Example

Form Builder - [Unnamed)

152 (e8] [=0 | [E8] (] [@)] [[A] [20)

Basic Employee Information RERRENENANARNNNREREANNNRRRRELR

NOTES

40

Section 2: Designing a Form

Creating the body, continued

Note:

When shown

The When Shown option buttons are used to control the display of items based on
the mode.

Exit routines

The Exit Routines area is used for CSL paragraph numbers. The numbers indicate
specific subroutines that are required to be executed before or after this item is
displayed.

Completing the list box
To complete the List Box dialog box, fill in each field as needed to describe the
list box. Position the list box in the workspace, using your pointer.

Character Mode users may use this item, however it converts to a Text Box
because List Boxes are not supported in character mode. To display the
description next to the entry field, use the field’s Option List description name as
an inquiry field.

41

Cyborg Scripting Language Customization - Participant Guide

Option Button Dialog

Option Button

SEX-CODE

Form Builder - [Unnamed)

152 (e8] [=0 | [E8] (] [@)] [[A] [20)

Basic Employee Information RERRENENANARNNNREREANNNRRRRELR

NOTES

42

Section 2: Designing a Form

Creating the body, continued

Option button
An option button may be used in place of a text box or a list box for any field that

is validated against an option list and has a finite set of valid responses (two to
five).

In Form Builder, click the Add Option button or select the following from the
menu:

Add Control B Option Button
Result: The Option Button dialog is displayed.

Field name

The field name identifies the data dictionary name to be used with the form item.
If you are not sure of the data dictionary name to include in the form item, you
may display a list of available field names by typing a question mark (?) and, if
possible, the first characters of the name field, in the field and choosing OK.

Label

The label text box identifies the option list value description represented by the
button. Place a question mark (?) in this field to display a list of valid values and
descriptions. Selecting a value populates both the label and field value. Labels
always display to the right of the button.

Field value
The Field Value identifies the option list value to be selected by the button.

Exit routine
The exit routine is for a CSL paragraph number. The number indicates the
specific subroutine that is to be executed before this item is displayed.

Section
The section field identifies a text item as being part of a header, footer, or body.
Type a one (1) in the section field to define this as the form Body.

Completing the button

Complete the button dialog. Position the button in the workspace using your
pointer.

43

Cyborg Scripting Language Customization - Participant Guide

Group Dialog

B Interior:
Leiransparent
~Rurple:
el Lo

I Blue:

Form Builder - [Unnamed)

2] =By [=b | [E8] (] [@®)] (] [A] [2)

Basic Employee Information

NOTES

44

Section 2: Designing a Form

Creating the body, continued

Grouping buttons

When more than one set of buttons display on your form, you will need to group
each set to make them independent from one another. In order to group buttons,
perform one of the following:

In Form Builder, click the Add Group button or select the following from the
menu:

Add Control » Group
Result: The Group dialog is displayed.

Type
Select one of the four options to determine the formatting of the box:

Groupbox
Recessed Box
Raised Box
Tab Group

Optional group box label
This field is used to identify the data grouped within the box. The box label may
be up to 20 characters.

Section
The section field identifies a text item as being part of a header, footer, or form
Body. Type a one (1) in the section field to define this as the form body.

Completing the group box
Complete the dialog box. Position the group box in the workspace using your
pointer.

Size a group box
To change the size of the group box perform the following steps:

1. Select the group box using the pointer.

2. Move the pointer to the edge of the group box so that it becomes a double-
headed arrow.

3. Hold the pointer and drag the group box to the appropriate size then release the
button.

45

Cyborg Scripting Language Customization - Participant Guide

Check Box Dialog

Checkbox

SMOKER-ID

Form Builder - [Unnamed]

2] [t [=o | (B (=] [@)] [(A [20)

Basic Employee Information

h

NENKNEXENENEREXE

NOTES

46

Section 2: Designing a Form

Creating the body, continued

Note:

Check Box item

A check box is used when a Yes or No answer is required for a field.
Additionally, the field must be validated against an option list. In order to add a
check box item, perform one of the following:

In Form Builder, click the Add Check Box button or select the following from the
menu:

Add Control P> Check Box
Result: The Check Box dialog is displayed.

Field name

The Field Name identifies the Data Dictionary name to be used with the Form
item. If you are not sure of the Data Dictionary name to include in the Form item,
you may display a list of available field names by typing a question mark (?) and,
if possible, the first character of the field name, into the field and choosing OK.

Label

The Label text box is used to identify the Dialog Box displayed on the workspace.
Though Form Builder allows you to enter more than 20 characters in this text box,
only the first 20 characters display. For check boxes, label text always displays to
the right of the check box.

Exit routine

The Exit Routine is for a CSL paragraph number. The number indicates the
specific subroutine in the Form's program that is to be executed before this item is
displayed.

Section

The Section field identifies a text item as being part of a Header, Footer, or Form
Body. Type a one (1) in the Section field to define this as the Form body.

Completing the check box

Complete the check box. Position the check box in the workspace using your
pointer.

Check boxes can only be associated with fields that have Option Lists HR00),
PP00, SC02 (Yes, No).

47

Cyborg Scripting Language Customization - Participant Guide

TAB Key Sequence

File Screen Mode Add Control

| Effective Date> XXXXXXXXXX | ~Allergies
| Disability: [xxNXXXXNXXKXKKNKKNX] | | REXXRXXXKNNNNKKNNKKK *]
| Blood Type: [xxXXXXXNXXKXKKXXXXNX 7] | [KEXXRXXXXNNNXKKNNKKK *]
| Last Donation: F{xxxxxxxxx | |xxxxxxxxxxxxxxxxxxxxj|
| "will ponate Blood | [KERRRNERRNRRRRARRRRN =]
" Employee Smokes KXXAXXNKAXNEXXNKXNRKE ~
B =
Religion:
Language:

| Emergency Contact/Physician
| Injury/Illness And Work Restriction

812 89 Section 1
Save Dialog
Save As FHE I
File name: Folders:
|xpgm1 _zat | c:\class
Cancel |
-~ e -~
&3 class
- -
Save file as tppe: Drives:
Screen Table(-.5AT) ¥| [Se« =

NOTES

48

Section 2: Designing a Form

Tab sequence

Tabbing

When you draw any type of box around a group of form elements, all items within
the group box are accessed before any items outside of it. Cursor movement via
TAB is always left to right, then top to bottom through a form. When a group box
is encountered, the system moves through all entries in the box before continuing
with the next item on the form.

Grouping
Use the group dialog box to define groups of items for tabbing and add graphical
elements to your form. There are three distinct items you can add using the group
dialog box:

Group box
Recessed box
Raised box
Tab group

Moving a group of items
To move a group box and its contents perform the following:

In Form Builder, click the Add Check Box button or select the following from the
menu:

Mode P> Group Move
Result: The Group Move option is selected.

Once the Group Move option is selected, click the box and drag the group to its
new position or use the arrow keys to reposition it.

Saving the design

The final step in designing the form is to save the design to a file. Make sure that
your form design file has an extension of .SAT, and remember to save it in all
capitals.

49

Cyborg Scripting Language Customization - Participant Guide

Section 2 Exercise 1

RECORD-DATE
MARITAL-CODE

CITIZENSHIP-CODE

TOTAL-DEPENDENTS
PRIOR-NAME

ID-VERIFIED

ID-PROVIDED

This is a key field that contains the effective date of the form’s information.

This code identifies the employee's current marital status. The description for this field is
MARITAL-STATUS.

This code contains the country where the employee holds citizenship. The description for this
field is CITIZEN-COUNTRY.

This is a 2-digit field that records the number of the employee's dependents.

This field contains an employee or applicant prior surname due to marriage or other legal
means.

This field contains the identification procedure status. The status denotes whether or not the
procedure has started and if identification could be produced. The description for this field is
ID-VERIFIEDS.

This field contains the code for the type of identification document produced. The description
for this field is ID-PROVIDEDS.

NOTES

50

Section 2: Designing a Form

Section 2 exercise 1

Purpose

This exercise gives you practice using the information you have learned in the
section.

Design a form that displays the fields listed below and allows them to be updated
in both graphical and character modes.

m Use the title Personal and Identification Information.
m Display the employee name in the form heading.
m Display the following fields and allow them to be updated:
e RECORD-DATE
e MARITAL-CODE
o CITIZENSHIP-CODE
e TOTAL-DEPENDENTS
e PRIOR-NAME
e ID-VERIFIED
o ID-PROVIDED

51

Cyborg Scripting Language Customization - Participant Guide

Composite View Dialog

ComosioVon |
¥ Headers [~ Section b
: [~ Section b
[~ Section 2 [~ Section 7
[~ Section 3 ¥ Section 8
[~ Section 4 " Footers

NOTES

52

Section 2: Designing a Form

Select/inquiry form section

Note:

Change the composite view

Once you have completed the form parameters for Section 8, you will notice that
the form display does not change. This is due to a feature known as Composite
View, which allows you to edit multiple sections of a form at a time.

For Form Section 8, we will be creating a Select/Inquiry version of the form, and
will need to change the composite view to edit only Section 8. In order to change
the composite view, perform one of the following:

In Form Builder, select the following from the menu:
Form B> Composite View
Result: The Composite View dialog is displayed.

In order for the workspace to display only Section 8 and the Headers, perform the
following from the Composite View dialog:

1. Deselect all sections other than Headers and Section 8.
2. Choose OK or press Enter.

The Composite View Feature allows you to view and edit items that have already
been created. Any items that are added when viewing multiple sections will be
added to the section that appears in the status bar.

53

Cyborg Scripting Language Customization - Participant Guide

Select/Inquiry—Section 8

Form Parameters E3 I

Form Name: IXPGM1

Repeating Lines: IE

v Headers
Section Number: 8 ™ Footers

Panel: |1_

Country: I_

Activity: |_

Special Display: I_

Section Desc: IInquiry

Cancel |

NOTES

54

Section 2: Designing a Form

Select/Inquiry form section, continued

Select/Inquiry section

As you recall, there are two display modes for a Form: Entry mode and
Select/Inquiry mode. This topic focuses on the creation of the Select/Inquiry
section.

Section 8
In order to edit form Section 8, perform one of the following:

In Form Builder, select the following from the menu:
Form P> Section 8
Result: The Form Parameters dialog is displayed.

Form name
This text box contains the name of the program you entered when you named the
form. Do not change this field.

Repeating lines
This field determines the number of times this section is repeated. Type ‘9’ to
repeat the fields on all remaining lines (down to line 23).

Headers
This check box determines whether the form design application will display fields
that are marked as headers. Select this button if it is not already selected.

Footers

This check box determines whether the form design application will display
inquiry or entry fields that are marked as footers. Deselect this button if it is
already selected.

Section number
This field contains the form section you are editing. It must contain an 8.

Batch layout section header
The remaining fields are used by the Batch Layout Report (BATCHL) program.
Refer to the Naming the Form topic for details.

55

Cyborg Scripting Language Customization - Participant Guide

Section 8—Select/Inquiry Form

Form Builder - X15CRO2.5AT

2] [eol] [=0] [E6 |5 (@] [[A] 2]

Personal and Identification Information HENNEENNNARNEAN N NN AN

NOTES

56

Section 2: Designing a Form

Select/Inquiry Form Section, continued

Format rules
The format of the Select/Inquiry Form section must contain the following format:

Headings appear on two lines above the text box with the data displayed inside
the unprotected areas.

All key fields must appear in order from left to right as entry fields.
One non-key field must appear following the key fields as an entry field.

All remaining non-key fields that will fit on one line will appear as inquiry
fields.

It is a requirement that labels are painted on lines 5/6 with the data fields
falling on line 7.

57

Cyborg Scripting Language Customization - Participant Guide

Section 2 Exercise 2

RECORD-DATE
MARITAL-CODE

CITIZENSHIP-CODE

TOTAL-DEPENDENTS
PRIOR-NAME

ID-VERIFIED

ID-PROVIDED

This is a key field that contains the effective date of the form's information.

This code identifies the employee's current marital status. The description for this field is
MARITAL-STATUS.

This code contains the country where the employee holds citizenship. The description for this
field is CITIZEN-COUNTRY.

This is a two-digit field that records the number of the employee's dependents.

This field contains an employee or applicant prior surname due to marriage or other legal
means.

This field contains the identification procedure status. The status denotes whether the
procedure has started, and if identification could be produced. The description for this field is
ID-VERIFIEDS.

This field contains the code for the type of identification document produced. The description
for this field is ID-PROVIDEDS.

NOTES

58

Section 2: Designing a Form

Section 2 exercise 2

Purpose
This exercise gives you practice using the information you have learned in the
section.

Modify the form you created in Section 2, Exercise 1 to include the following:
m Add a tab group to the Form (Graphical Mode only).

m Create a Select/Inquiry section of the Form using Form Section 8.

59

Cyborg Scripting Language Customization - Participant Guide

Section Summary

=« The form design application
and The Solution Series

= Designing the form
s Creating the header
s Creating the body

= Saving the form

» Select/Inquiry form section

NOTES

60

Section 2: Designing a Form

Section summary

In this section, you learned to use Form Builder. Specifically, you learned:

The form design application and The Solution Series

Designing the form

Creating the form header

Creating the form body

Saving the form

Select/Inquiry form section

61

Cyborg Scripting Language Customization - Participant Guide

NOTES

62

Section 3: Customization Basics

Section 3: Customization Basics

Table of Contents
OVETVIEW ..ttt ettt e h e et b e et e bt e eat e e bt e sate e bt e e a bt e bt e sab e e bt e eabeesbbeeabeenaneenne 65
The form design application and CSLcccuiieiiiiiiiieceeee e e e 67
FOImM PrOZIAMIMINGc..eiitieiiiieiie ettt ettt et e st e et e s e e et e st e e sbeeesbeeseeenseessaeenseenseans 69
Context-SeNSitiVe MENU TECOTASeruteriieiiritetieieeiiest ettt ettt sttt et st sbeenteeaeesaeeaea 79
EXtracting the fOTMoiiiiiie ettt e e e e e e naeeen 81
Generating the TOTMNcoociiiiiiiece e et e e e e e et e e s aae e essaeesaraeesnneeennseeennns 83
Extracting the form in DatChoooiiiiii e 85
Generating the form i batChooouiiiiiiiii e e 87
SECHION SUMIMATYecuiiiiiieiieeiieite et esiteeteesteeeteestteesseesseeeseessaeesseessseasseesseesnsaessseesseesssesssesnseessnes 89
SECTION 3 EXETCISE -..uveeneieeutieriieeteeeite et e sttt et e e sttt et e estt e e bt e eateeabeeeateenbeesateeabeesaeeenbeeeabeeabeesnbeanneenanes 91

63

Cyborg Scripting Language Customization - Participant Guide

Objectives

» Identify the relationship between the
form design application and Cyborg
Scripting Language (CSL)

» Identify and use programming verbs
» Create context-sensitive menu records

s Create and run a form program

NOTES

64

Section 3: Customization Basics

Overview

Purpose
In this section, you will learn the technique of creating a form program.

Objectives
When you complete this section, you will be able to:

m Identify the relationship between the form design application and Cyborg
Scripting Language (CSL).

m Identify and use programming verbs.
m Create context-sensitive menu records.

m Create and run a form program.

65

Cyborg Scripting Language Customization - Participant Guide

The Form Design Application and CSL

The Form Design Application CSL

= Form Layout = Database Access

= Field Presentation = Form Processing

= Form Navigation m Error Processing
NOTES

66

Section 3: Customization Basics

The form design application and CSL

The relationship between the application and CSL

As you recall, Form Builder is the tool for designing the look and feel of Solution
Series forms. However, CSL programming is required to complete the
development process of a form.

m The form design application provides the capabilities of:
e Form layout
o Field presentation

o Form navigation

m CSL provides the capabilities of:
o Database access
e Form processing

e Error processing

67

Cyborg Scripting Language Customization - Participant Guide

Form Programming Structure

= Record access statement

= Form style statement

= Form title statement

= Data entry line statements

= Data verification statements

NOTES

68

Section 3: Customization Basics

Form programming

Program structure
Forms are programmed using a structure common to all form programs. The
program structure should include the following components:

Record access statements
Form styles statement
Form title statement

Data entry line statements

Data verification statements

As you can see, this structure parallels the form components. Additionally, the
form program must be coded so that each of the above sets of statements is
executed one after the other.

69

Cyborg Scripting Language Customization - Participant Guide

Record Access

P100-START-SCREEN.
Format KEY-REQUIRED.
Record Access: UPDATE-EMPLOYEE .

NEW-SCREEN-STYLE.

SCREEN-SECTION '0°'.

IF INQUIRY-MODE OR SELECTION-MODE

GO TO P990-INQUIRY-SCREEN.

P200-ENTRY-SCREEN.

| UPDATE-EMPLOYEE. | SCREEN-SECTION "L'.
P300-VERIFY.

SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.

| UPDATE-COMPANY. |

|UPDATE—TAXES_ | IF RECORD-NOT-UPDATED
RETURN.
CALL “XXXXXX' . @ Edit Routine
RETURN.

P990-INQUIRY-SCREEN.
SCREEN-SECTION '8’.
RETURN.

NOTES

70

Section 3: Customization Basics

Form programming, continued

Record access

As you recall, the READ- verbs allow you to access records on the Employee
Database for inquiry use only. Therefore, UPDATE- verbs are provided to access
the employee, company and tax records for update. The UPDATE- verbs:

Access the entire Employee Database record into working storage.

Must be the first commands coded in a form. The verbs used depend on the
type of data being accessed.

More than one access verb can be used in a program.

Lock the record while the record is read into memory or rewritten to the file.

There are separate verbs for accessing employee, company and tax records. They
are:

UPDATE-COMPANY

Reads the company record data into working storage and allows updating of
the data. UPDATE-COMPANY uses the data in the CONTROL-1-2 field as
the key to the record.

UPDATE-EMPLOYEE

Reads the employee record data into working storage and allows updating of
the data. UPDATE-EMPLOYEE uses the data in the CONTROL-1-2 field and
KEY field as the key to the record.

UPDATE-TAXES

Reads the tax record into working storage and allows updating of the data.
UPDATE-TAXES uses the data in the CONTROL-1-2 field and KEY field as
the key to the record.

71

Cyborg Scripting Language Customization - Participant Guide

Format

Form Style and Title

NEW — SCREEN — STYLE.

SCREEN — SECTION

fieldname

literal

Record Access:
Form Style:
Form Title:

P100-START-SCREEN.
KEY-REQUIRED.
UPDATE-EMPLOYEE.
NEW-SCREEN-STYLE.
SCREEN-SECTION '0'.
IF INQUIRY-MODE OR SELECTION-MODE
GO TO P990-INQUIRY-SCREEN.
P200-ENTRY-SCREEN.
SCREEN-SECTION '1'.
P300-VERIFY.
SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED
RETURN.
CALL ‘XXXXXX' . @ Edit Routine
RETURN.
P990-INQUIRY-SCREEN.
SCREEN-SECTION 1'8'.
RETURN.

NOTES

72

Section 3: Customization Basics

Form programming, continued

NEW-SCREEN-STYLE

The NEW-SCREEN-STYLE verb must be used in all forms that were developed
using the form design application. The verb signals the CBSV COBOL logic that
a non-key field may have data within the entry box.

Additionally, this verb tests for selection or inquiry mode. If either of these modes
is encountered, it prevents radio buttons, check boxes, drop down list boxes, and
other controls from being displayed. This is necessary because all of these
controls can be created only in conjunction with entry fields.

This command MUST be on its own line. No other code can appear before or
after this verb on the same line.

This command cannot be used within an IF statement.

Form title
The form section 0 contains the form title information and is displayed to the
form using the SCREEN—SECTION verb. This is a reserved section.

Form Section 0's content will contain any text or display boxes that were defined
as a header.

SCREEN-SECTION

The SCREEN-SECTION verb is used to display a specific section of a form that
was created using the form design application:

m This command MUST be on its own line. No other code can appear before or
after this verb on the same line.

m This command cannot be used within an IF statement.

73

Cyborg Scripting Language Customization - Participant Guide

Record Access:

Form Style:
Form Title:
Form Section 8:

Form Sections 1-7

Form Section 8:

Data Lines
Form Sections 1-8

P100-START-SCREEN.
KEY-REQUIRED.
UPDATE-EMPLOYEE.
NEW-SCREEN-STYLE.
SCREEN-SECTION '0'".
IF INQUIRY-MODE OR SELECTION-MODE
GO TO P990-INQUIRY-SCREEN.
P200-ENTRY-SCREEN.
SCREEN-SECTION '1'.
P300-VERIFY.
SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED
RETURN.
CALL ‘XXXXXX’. @ Edit Routine
RETURN.
P990-INQUIRY-SCREEN.
SCREEN-SECTION ¢8°.
RETURN.

NOTES

74

Section 3: Customization Basics

Form programming, continued

Data entry lines
The coding for the data entry line(s) is dependent upon the number of form
sections you have created.

m Form sections 1 through 7 are used to create the different areas of images that
will appear on the form. These include entry, inquiry, and option list fields.

Data inquiry lines

The coding of the data inquiry line is conditionally dependent upon whether the

form has been placed into inquiry or selection mode.

m Form Section 8 is used to create the inquiry version of the form. This is a
reserved section.

m The Boolean field INQUIRY-MODE can be checked to determine if the form
1s in inquiry mode.

m The Boolean field SELECTION-MODE can be checked to determine if the
form is in select mode.

SCREEN-SECTION
Remember, the SCREEN-SECTION verb:

m Must be on its own line. No other code can appear before or after this verb on
the same line.

m Cannot be used within an IF statement.

75

Cyborg Scripting Language Customization - Participant Guide

Data Verification and Form Prompts

P100-START-SCREEN.
KEY-REQUIRED.

Record Access: UPDATE-EMPLOYEE.
Form Style: NEW-SCREEN-STYLE.
Form Title: SCREEN-SECTION '0O'.
Form Section 8: IF INQUIRY-MODE OR SELECTION-MODE
GO TO P990-INQUIRY-SCREEN.

Form Sections:1-7 P200-ENTRY-SCREEN.

SCREEN-SECTION '1'.
Verification: P300-VERIFY.

SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED

RETURN.
CALL ‘XXXXXX’. @ Edit Routine
. RETURN.
Form Section 8: P990-INQUIRY-SCREEN.
SCREEN-SECTION ‘8’ .
RETURN.
NOTES

76

Section 3: Customization Basics

Form programming, continued

Data verification

The next group of statements included in our form program is the data verification
statements. The minimum statements to include for form verification insure that
error messages appear at the bottom of the form and make sure that system-
detected errors are shown.

m SET-FOR-MESSAGES insures that any messages will be placed at the
bottom of the form.

s The ERRORS-EXIST Boolean checks the SCREEN-ERROR field for an @.
If there are no errors, SCREEN-ERROR contains an F.

s The RECORD-NOT-UPDATED Boolean checks the value of the RECORD-
UPDATED field for a blank. This field is initially set to a blank when a form is
painted. If any data entry is detected it is setto Y.

m Additional relational field edits may be placed in a called subroutine or coded
directly into this part of the program.

77

Cyborg Scripting Language Customization - Participant Guide

Context-sensitive Menu Records

COHHAND = | | |
Screen/Sq ScrNam GrLnKy Henu Screen Title

| 48-SCR @1 41-SCR| | | M Salary Information

| 48-SCR 82| 49-SCR| | | M Performance Appraisal Results

41-SCR_61] 46-SCR
41-SCR_62] 42-SCR
42-SCR_01| 40-SCR|
93BSCR_01| 93XSCR]|
93BSCR_02| 93TSCR]|
93BSCR_ 63 R
"| 93XSCR_01] 93BSCR| | |
93XSCR_02| 93TSCR]|
"| 93XSCR_03] 93PSCR| | |
EF-SCR_01| GG-SCR]
JJ-SCR_01| GG-SCR]|
JJ-SCR_62] JR-SCR

Salary Assignments/Changes
Projected Salary Changes
Salary Assignments/Changes
Absences

Absence Inquiry By Type
Absence Points

Absence Entitlement

Absence Inquiry By Type
Absence Points

Home Location Pay Allocation
Payroll Home Location/Pay Allo
Reciprocal Tax Setup

|
]
@
-
]
E
|
|
ZIZZIZZZZZZZIZZ

| M18SCR @1 M18SCR| | | Y| Job Set Up
| miescR o2 | ||
_| M10SCR 64 M13SCR| | | Y| Job Skills Required
| M18SCR_85] M15SCR| | | Y| Job Education Required
| M18SCR_B86| M1TSCR| | | Y| Job Training Required
Salary Assignment/Changes AUSTIN, STEVEM
Effective Datex [EEEY 00 Frocess Owerride
Key Separator> 15t Occurrence _I
 owverride calculation
Type Of change» rncrease-Merit = History-No FR Update
" Mot 1st Chg for Date
Pay Frequency: weekly ‘:J * No Override(Detault)
I CalcuTation Entries [CATruTATREd RAs] LS
) Sawe s Farm
Hours Fer Period: E [Tk 20.00
Hourly Rate: =ancal Tz ron 2.5153
salary Fer Period: Select An Employes... 288.46
Annual salary: 2 15, Q00,00
Amount Change: Hlim Selesim 6:073.16
Fercent Change: S alam I § £5.03
Months Since Prior:] Ay Infarmatian : 181
Performance Appraizal Results

| History

NOTES

78

Section 3: Customization Basics

Context-sensitive menu records

Context-sensitive menus provide the user with the ability to navigate to related
forms directly without using the application Menus or Navigator. Context
Sensitive Menu (ECM) records are stored on the system control repository
(FILEO1).

Editing ECM records

The Edit Utility form (EDIT) is used to create, update, and delete context-
sensitive menu records.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: System Control Repository Utilities
Task: & Edit Control Repository Object

Result: The Edit Utility form EDIT) is displayed.

Object: Context Menus Edit ECM Records
Object Key: xxxSCR Form name

Edit Utility form (EDIT) format

(Unlabeled) The left column is for the line commands of Add, Change or
Delete.
Screen/Sq Form ID of the host form followed by 1 blank and a 2-digit

sequence number to keep all the records for the same form
unique. This is the key for the ECM record.

ScrNam The form ID to be included in the context-sensitive menu.
Gr Group code. (Not used at this time. Leave blank.)
Ln An ‘L’ will insert a horizontal line at this point in the menu.

Used to group related forms in the menu list. The rest of the
line will be blank if inserting a line with "L’.

Ky An ‘N’ will retain the current key and additional key
information (employee number, and so forth).
A Y’ or blank will result in a prompt for the key information
prior to the form’s display.

Menu Screen Title The form title to be used in the shortcut menu.

Access

The context-sensitive menu is in the lower portion of the Form’s shortcut menu
accessed by right clicking on a blank part of the form.

79

Cyborg Scripting Language Customization - Participant Guide

Extracting the Form

]

Save As Dialog

80

Section 3: Customization Basics

Extracting the form

Extract the form
In order to complete development of a form program, you must first extract it
using the Get Copy of Screen Appearance Table program (GETSAT).

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Programming Utilities
Task: Extract Form Appearance Table

Result: The Get Copy Of Screen Appearance Table (GETSAT) form displays.
After you have accessed the GETSAT program, complete the following steps:
1. Enter the form ID of the form and click OK or press Enter.

Result: The Save As dialog box displays.

2. Enter the name of the Screen Appearance File (.sat) and click OK or press
enter to save it.

Result: The Screen Appearance File will be extracted from The Solution Series.

81

Cyborg Scripting Language Customization - Participant Guide

PUTSAT _|
Processing

"MAINTI" —

RELOAD __|
Processing

Generating the Form

GEMERE —

RELOAD -

Form Builder

Form Appearance
Table

SAT File

!

| Import to FileD1 |

l

EDIT —

RIS records

|

| Generate Source |
PIG reco
—_—

rds

Create
Oniline
Source
Code

l

Pl records

L
Pr records

e | Compile Source Records

v
PiX

records

NOTES

82

Section 3: Customization Basics

Generating the form

Generate the form

To complete the development of the form program, you must combine the form
appearance data with your CSL program. This task is completed using the Update
Form Appearance Table program (PUTSAT):

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Programming Utilities
Task: Update Form Appearance Table

Result: The Open dialog box is displayed.

Use the Files list box to locate and select the Form Appearance file (.SAT
extension), then choose OK or press ENTER.
Result: The Form Appearance File is imported into The Solution Series. The Form

Appearance logic is generated and the data entry form program is compiled. When
the compile is complete, the RELOAD IS OK message appears.

83

Cyborg Scripting Language Customization - Participant Guide

PUTSAT _|
Processing

"MAINTI" —

RELOAD __|
Processing

Generating the Form

GEMERE —

RELOAD -

Form Builder

Form Appearance
Table

SAT File

!

| Import to FileD1 |

l

EDIT —

RIS records

|

| Generate Source |
PIG reco
—_—

rds

Create
Oniline
Source
Code

l

Pl records

L
Pr records

e | Compile Source Records

v
PiX

records

NOTES

84

Section 3: Customization Basics

Extracting the form in batch

Batch extraction

The GETSAT program extracts the Screen Appearance File from the System
Control Repository (Control File; FILEO1).

1. Execute the GETSAT utility in batch as follows:

INPUT FILEO1 System Control Repository
FILEO4 Control Record File
OUTPUT FILEO3 Audit/Message File
FILE10 Screen Appearance Table (*.SAT)
EXECUTE CBSVB

The control record on FILE04 has the following syntax:

Positions Entry Description

23-28 GETSAT Program name

31-40 Form program name Form program name
(for example, ‘05-SCR”)

Control record example:

1 2 3 4
1...5....0....5....0....5....0....5....0....5....0....5
GETSAT 05-SCR

w1

Launch form design application

Revise the screen display

Save the revised Screen Appearance Table
Return to The Solution Series

Generate the form (*.SAT file) in batch

A T

85

Cyborg Scripting Language Customization - Participant Guide

PUTSAT _|
Processing

"MAINTI" —

RELOAD __|
Processing

Generating the Form

GEMERE —

RELOAD -

Form Builder

Form Appearance
Table

SAT File

!

| Import to FileD1 |

l

EDIT —

RIS records

|

| Generate Source |
PIG reco
—_—

rds

Create
Oniline
Source
Code

l

Pl records

L
Pr records

e | Compile Source Records

v
PiX

records

NOTES

86

Section 3: Customization Basics

Generating the form in batch

RELOAD processing

Execute the Update Form Appearance Table program (PUTSAT) in batch. The
PUTSAT program updates the Screen Appearance Table file, runs the GENERS
program to create the screen appearance logic, and runs the RELOAD program to

compile the screen code. Type the name of your form program in the control
statement KEY field and use FILEOS to input the .SAT file.

If you make changes to either the CSL source code records (P/) or Form
Appearance Table records (P/S) using the online Edit Utility (EDIT), the
RELOAD compiler must be executed. The RELOAD processing includes the
generation of CSL source code records (P/G) from the form appearance table
records and the creation of the executable program records (P/X).

Execute this utility in batch as follows:

INPUT FILEO4 Control Record File

FILEOS Screen Appearance Table (*.SAT)
OUTPUT FILEO3 Audit/Message File
EXECUTE CBSVB

The control record on FILE04 has the following syntax:

In these positions Enter Description
23-28 PUTSAT Program name

Control record example:

1 2 3
1...5....0....5....0....5....0....5....0....5....0....5
PUTSAT

=
(€)]

Access the form in The Solution Series and review the layout to make sure it is
acceptable and conforms to the specification.

87

Cyborg Scripting Language Customization - Participant Guide

Section Summary

» Form components
« Form programming
s Create context-sensitive menu records

» Generating the form

NOTES

88

Section 3: Customization Basics

Section summary

In this section, you learned the basic techniques for creating an online form
program. Specifically, you learned:

Form components

Form programming

Create context-sensitive menu records

Generating the form

89

Cyborg Scripting Language Customization - Participant Guide

Section 3 Exercise

NOTES

90

Section 3: Customization Basics

Section 3 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

1. Create a form program that displays the form you designed using Form
Builder.

2. Create context-sensitive menu records for your form. Include the following
forms:

03-SCR—Telephone Information
24-SCR—Automobile Information
16-SCR—Emergency Contact/Physician

3. Generate the form program using the Update Form Appearance Table program
(PUTSAT).

4. Run and test the form program.

91

Cyborg Scripting Language Customization - Participant Guide

NOTES

92

Section 4: Defining Fields

Section 4: Defining Fields

Table of Contents
OVETVIEW ...ttt ettt ettt e et e ettt e et e e et e e s atee e atee e stae e st aeansseeansseeansseeasseaeasseeeasseeensseesnsseesnnseeennseesnnns 95
The Solution Series field TEPOTLScccuviieiiieeiiecee e e e e sanee e 97
Creating OPLION LISES ..c..eiruiiiiiiiitiee ettt ettt st sb et et sbe et senesbe et 99
Field definitionsoevuiiiiieiiieieee et ettt ettt e e st e esbeeenbeeseeenseenseennnes 101
SECHION SUMIMATYeeiuiieiieeiiieiieeeteeite et estteeieesteeesbeestteesseessseesseessseesseessseesseeasseenseessseenseesssennseens 127
SECLION 4 EXETCISE .eeeuvveeeeiieeiiieetieeeitteeeiteeesreeesteeessteeassseeasseeasseeasssaeassseeasssaeasseesssseeessseesnssessnns 129

93

Cyborg Scripting Language Customization - Participant Guide

Objectives

= Recall The Solution Series
field reports

= Create an option list for field validation

» Identify the components
of a field definition

s Create a field definition

NOTES

94

Section 4: Defining Fields

Overview

Purpose

In this section, you will learn about how to define a field in The Solution Series as
well as utilities used to maintain field definitions.

Objectives
When you complete this section, you will be able to:

m Recall field reports
m Create an option list for field validation
m Identify the components of a field definition

m Create a field definition

95

Cyborg Scripting Language Customization - Participant Guide

Field Reports
= Field table list (FTLIST)

= Field table menu (F-MENU)

= Screen label to field name
cross-reference (FLABEL)

= Segment layout report
(SRTFLD/F-SEGM)

= Field to program cross-reference
(CROSSX/CROSSP)

= Program memory map (MAPRPT)

NOTES

96

Section 4: Defining Fields

The Solution Series field reports

Field reports
As you recall from the Introduction to Cyborg Scripting Language course, there
are six reports that supply CSL programmers with valuable information:

Field Table List (FTLIST)

Online program that enables you to view the field definitions in alphabetic
order by segment/pointer. The online display is in scrolling format. A batch
run produces a printout with headings and page numbers.

Field Table Menu (F-MENU)

Online program that allows you to view the attributes of the data fields in the
Field Name Table in a user-friendly, menu-driven format in displacement
order by segment/pointer.

Screen Label To Field Name Cross Reference (FLABEL)
Cross-reference between the field labels used on a form and their Field Name
Table field names.

Segment Layout Report (SRTFLD/F-SEGM)
Batch programs that produce a report that displays each segment's layout in
position order.

Field to Program Cross Reference (CROSSX/CROSSP)
Batch programs that produce a report that cross-references where all fields and
verbs are used within a program.

Program Memory Map (MAPRPT)
Batch program that produces a report that displays the memory usage within a
program.

97

Cyborg Scripting Language Customization - Participant Guide

Creating Option Lists

Codeset Walue |_
SCZZ

OFFICE SUFFLIES

NOTES

98

Section 4: Defining Fields

Creating option lists
Option lists
As you recall, an option list is a list of values that are valid for a particular field
on a given form. To create a new option list:

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Programming Utilities
Task: © Update Control Repository Objects

Result: The Edit prompt form is displayed.
Use the following Edit Utility form (EDIT) fields to create an option list:

Object Select Codeset Value (C/V).
Object Key Type the Option List name.
Press Enter.
Result: The Option List Edit form is displayed.

Edit columns
The Edit Utility form (EDIT) for option list values is in a different format than the
source code. The column definitions are:

m Line Command
Specifies whether you are adding, changing or deleting the line.

m Code
The code value that will be stored in the record.

m Name
The name of the option list or the description of the option value. The first line
of all option lists must contain the option list name with a blank value.

m Other Values
The alternate language description of the option value.

99

Cyborg Scripting Language Customization - Participant Guide

Field Name Table
= Data fields

» Key fields
= Date fields

= Option list fields

NOTES

100

Section 4: Defining Fields

Field definitions

Fields
There are several different kinds of fields used in The Solution Series:

m Data fields
can be alphanumeric or numeric.

m Key fields
uniquely identify segments and records.

m Date fields
can be century/complement, regular, or time-span format.

m Option list fields
access a list of valid values.

Before you can refer to a field in a program, the field must be defined to the
system. This means that the definition must reside on the field name table.

Field name table

The field name table resides on the system control repository (FILEO1). When
delivered, it contains the names and definitions for all existing entry and inquiry
fields, CSL words and verbs, and defined files. If you want to create, modify, or
delete fields, you can do so through the Field-Name Entry/Maintenance form (F-
NAME).

Relational database users should use caution when re-defining existing fields
using the field name table. The redefinition will only exist within The Solution
Series since relational table columns may only have one name.

101

Cyborg Scripting Language Customization - Participant Guide

Field Maintenance and Edit

| Field Maintenance &nd Edit

Action: | —Field Propertie
Field Mame: |
Data Type:
—Field Laocation
Field Type:
Painter: |
Storage Length: | Template:
Displacement: |

Lengths: Display: | Entry:

Lo blele e

—Field Option:
hodule:
Propagate: d
Structure:
Rounding: ;I
Seg/Table 1D: | Table Separator: |
Header Switch: |
Codeset: |
[~ RDEBMS Field Edit Routine: |

NOTES

102

Section 4: Defining Fields

Field definitions, continued

Field maintenance

The Field Maintenance And Edit form (F-NAME), contains a group of fields that
together provide a unique definition for every field in The Solution Series. In
order to access the Field Maintenance And Edit form (F-NAME) perform one of
the following:

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: © Define a Field

Result: The Field Maintenance And Edit form (F-NAME) is displayed.

F-NAME fields

The following pages detail each of the fields on the Field Maintenance and Edit
form (F-NAME). Together, these fields uniquely identify a field in The Solution
Series.

103

Cyborg Scripting Language Customization - Participant Guide

POINTER, LENGTH, and DISPLACEMENT

Record/Pointer/Segment Relationship

Record Ptr Seg Description
Company 21 A Company Name & Address 29
22 B Company Earning & 8883888388????????13333383338?????
Deductions(HEDs) 012345678901234567¥%12345678901234...
23 C 28— * 999999M12345678999|EE 308-82-3775
24 D Other Company detail/user- 30 ——*/F@01AUSTIN, STEVEN.|F999AUSTIN, STEVE..
defined Data 31— *|G0105000CHGOMANU ... [G020500NYC SALE ...
Tax 25 T1 Report Generator Selection 32,33 —|H0010100... . |H0030100... .|H5®1®153
26 4 Tax Body Information 34/35 *|J101 01..[7102 10... [J103 10...]
7 5 Tax Exemptions and Credits 36— *|LO100204AUSTIN, J ..|LO2002ACME MANUF ...
LO3CHICAGO, IL606 ..|LZF213A31911500 ...
Tax Brackets LZF214A319S0700 ... |LZQ213A31SASMITH ...
Employee 28 Key Employee key information LZR218G029C1600 ... |LZR218A319C1500
29 E Basic employee data 37 —*P910101...|P910201...|P910131...P910401 ...
30 F Employee name and address
31 G Labor detail
32 H Earnings and Deductions
(HEDs)
33 H Earnings and Deductions
history
34] Employee taxes
35 7 Employee tax history
36 L Human Resources/user-
defined data

37 P Period Table data

NOTES

104

Section 4: Defining Fields

Field definitions, continued

Note:

ACTION

This one-character field lets you create, modify, or delete a field definition.
s A (ADD)—to create a new field

s C (CHANGE)—to modify an existing field

m D (DELETE)—to remove a field from the system.

FIELD NAME

This 20-character Key field contains the field name. It serves as the key to the
Field Name Table record.

m Separate words in a multi-word name with hyphens (-).

m Begin all user-defined field names with the letter X to distinguish them from
Cyborg-delivered fields.

m Alternatively, user-defined multi-word field names may begin with any
letter/number if an asterisk (*) is used to separate the words.

Certain Relational Database systems limit the size of field names to 18
characters.

POINTER

This two-digit field defines the field’s location and the segment to which it
belongs. Currently, valid values are 05 to 45. For example, a field that stores basic
data about employees resides in Pointer 29 (E segment).

STORAGE LENGTH
This three-digit field physically defines the field’s storage length. Fields in The
Solution Series can be up to 60 characters long. Valid values are 000 to 060.

DISPLACEMENT

This three-digit field defines the field’s physical location within the pointer by
defining where the field starts. Displacement is relative to zero (0). In user-
defined fields, the minimum value for this field is 003 to allow for the segment
type and segment code.

105

Cyborg Scripting Language Customization - Participant Guide

FIELD TYPE

Q — o R~ @

The field is a partial segment key, but is not the last field in the key.

The field is the only segment key, or is the last field in a string of segment key fields.
The field is an Option List description.

The field is the first data field in a single-occurrence segment code.

The field is a required, non-key field.

(None). The field is a regular data entry field.

NOTES

106

Section 4: Defining Fields

Field definitions, continued

Note:

Note:

DATA TYPE
This two-character field defines the kind of information and number of decimals
that the field stores. Several data types are reserved for Cyborg use only.

FIELD TYPE
This one-character field indicates whether the field is a segment key, an option
list description, a required field, or a data entry field.

TEMPLATE
This two-digit field defines the edit routine or mask that the system uses when it
displays the field. Numeric and date fields require these values.

The actual number of decimal places is defined in the DATA TYPE field.
Therefore, the value that you select in the DATA TYPE field must agree with the
value that you select in the TEMPLATE field, or the system may truncate the
data.

DISPLAY LENGTH
This two-digit field defines the number of output characters that is displayed on a
form or report, based on the template.

ENTRY LENGTH

This two-digit field defines the number of characters that you can enter in a field.
It is used for numeric and date fields. Valid values are numbers from 01 through
60 and blank. This field defines the length of the entry box on a form.

When this field is left blank and the DATA TYPE is numeric, the STORAGE
LENGTH is used to determine the size of the ENTRY LENGTH.

When this field is left blank and the DATA TYPE is a date, the larger of the
STORAGE LENGTH or DISPLAY LENGTH is used to determine the size of the
ENTRY LENGTH.

107

Cyborg Scripting Language Customization - Participant Guide

STRUCTURE

K The field resides within a multiple-occurrence segment that is uniquely
identified by the Segment Type and Segment Code (Company C segment,
Employee E and L segments).

8 The field resides within a single-occurrence segment that is uniquely
identified by the Segment Type (Company A and B segments, Employee F,
G, H, J, and P segments).

SEGMENT CODES

For user-defined segments, the valid segment codes are:

[Segment C (Company-level data) Bx and Cx
[Segment L (Employee-level data) Lx, Mx, and Nx where x is 1 through 9 or A through Z.

NOTES

108

Section 4: Defining Fields

Field definitions, continued

MODULE

This two-character field defines the application to which the field belongs. If you
use the PC Solution you must enter one of the valid values.

STRUCTURE

This one-character field defines how the system maintains the field by specifying
whether the field resides on a single- or multiple-occurrence segment type.

SEG/TABLE ID

This four-character field serves two purposes: to define the segment that a
company, tax or employee field resides within, or to identify the Table ID for
fields that reside in table records (Pointer 40).

TABLE SEPARATOR

This one-character field is used to identify the fifth position of a Table ID when a
logical table spans more than one physical record.

CODESET

This five-character field contains the name of the option list record group that
lists the valid values for the field.

EDIT ROUTINE

This field contains the name of the CSL program that will be called each time a
value is entered in this field via a data entry form.

109

Cyborg Scripting Language Customization - Participant Guide

ROUNDING

Rounding Methods

U Based on the rounding digit value, increase the number by one.

D Based on the rounding digit value, truncate the number to that position.

5 If the rounding value is 5 or greater, increase the number by one. If the rounding
value is less than 5, truncate the number to that position.

Rounding Digit

0-9 The rounding digit specifies what place in the number is rounded, such as the

penny or dollar places in a dollar amount. Positions are counted right to left, and
valid values are 0 through 9.

Example: The result of a calculation is 101.454; however, the field that stores the value has only
2 decimals. This example shows the effect of rounding:

ROUNDING Field Stored

Result
50 (default) 101.45
52 101.00
uo 101.46
Ul 101.50
U2 102.00
DO 101.45
D1 101.40
D2 101.00

NOTES

110

Section 4: Defining Fields

Field definitions, continued
PROPAGATE

This field defines a field’s propagation parameters. Propagation is a system
function that permits you to update an Employee Database (FILE02) record
without entering duplicated information again. It is valid for fields that reside in
stacked segments. If you enter a value in this field, the system tries to match the
segment type, segment code, and the specified number of bytes of key data for the
segment when you update the record. If it finds a match on an existing
occurrence, it inserts the existing data into the new segment’s field automatically.

Valid entries are to match the Segment ID, the Segment Code, and from 0 to 9
bytes of Key data. Specifying 0 means that you want the system to match only the
segment type and segment code. Choose (None) or leave the field blank if you do
not want to propagate the field.

ROUNDING

This two-character field defines how a numeric field is decreased when the
system must truncate it. The ROUNDING field is made up of two distinct values:

m Rounding method
m Rounding digit

Rounding is used by the MOVE and CALCULATE verbs when the receiving
field is smaller than the sending field.

111

Cyborg Scripting Language Customization - Participant Guide

HEADER SWITCH FIELDS

NOTES

112

Section 4: Defining Fields

Field definitions, continued
HEADER SWITCH

The header switches are used by online forms and reports to create column
headers from field names. When you add a new field, leave this field blank and
the system automatically supplies appropriate values.

Position 1
This field lets you specify the number of spaces that you want inserted before
the first heading line. Minimum of 1.

Positions 2—-3

This field lets you specify the number of characters that should appear in the
first heading line. The remaining characters are moved to the second heading
line.

Position 4
This field lets you specify the number of spaces that you want inserted before
the second heading line. Minimum of 1.

Position 5
This field lets you specify the number of spaces that should precede the field
and position it under the heading.

Position 6
This field lets you specify the number of spaces that should follow the field.

RDBMS field
For relational database only, this field requires a Y when the field is to be used in
creating a column entry in a relational table.

113

Cyborg Scripting Language Customization - Participant Guide

Partial Key Field

i
FART I AL -KEY

Century/ Complement O |_

Key-Part of Key a

005 e o
03

10 |

Payroll/HRMS |

Seg has 1D and Code |—
"g_| i

[
____&

207410

r

Key Field

| |
KEY-FIELD
Alphanumeric =

Key-Ending/only key o]
I

]]
Fayroli wns o]

Seqg has ID and Code |«
Mz | |

___________ &
___________ &

v

NOTES

114

Section 4: Defining Fields

Field definitions, continued

Field examples
The next several pages show the generic field characteristics for the most
common field types.

Partial key field

Partial key fields are part of the key that uniquely identifies a multiple occurrence
segment. Partial key fields:

m May be any type of field type: alphanumeric, numeric, name, or option list
fields.

m Must reside between displacement 003 and 015 for user-defined segments
(displacement 003 if it is the first partial key field).

m Must be identified with a FIELD TYPE of Key—Part of Key (P).

Key field
Key fields are the last or the only key that uniquely identify a multiple occurrence
segment. Key fields:

m May be any field type: alphanumeric, numeric, name, or option list fields.

m Must reside between displacement 003 and 015 for user-defined segments
(displacement 003 if it is the only key field).

m Must be identified with a FIELD TYPE of Key—Ending/Only Key (K).

115

Cyborg Scripting Language Customization - Participant Guide

Alphanumeric Field

[Field Maintenance &nd B0t
i

ALPHAMUMERIC-FIELD

Alphanuarner ic |—

Payroll/ HRMS -

Seg hias 1D and Cods hd
i

NUMERIC-FIELD

Mumeric 0 Decimals |

e
[|—

|
Fins o

Seg has D and Code |_
i

¢
¢

107220

|

NOTES

116

Section 4: Defining Fields

Field definitions, continued

Alphanumeric field

Alphanumeric fields may contain both alpha and numeric data. Alphanumeric
fields:

m Are identified by a DATA TYPE of alphanumeric (00).
m Do not require an ENTRY LENGTH, DISPLAY LENGTH, or TEMPLATE.

Numeric field
Numeric fields contain only numbers. Numeric fields:

m Are identified by a DATA TYPE of numeric with 0 to 6 Decimals (10-16).

m Require an ENTRY LENGTH equal to the STORAGE LENGTH or blank and
the default is to the STORAGE LENGTH.

m Require a DISPLAY LENGTH; this will be dependent on the TEMPLATE.
m Require a TEMPLATE.

117

Cyborg Scripting Language Customization - Participant Guide

Name Field

i
NAME-FIELD

=
=
107220]
v

e o
S
S

] |
s o]

Seg has 1D and Code |—
i

Mphammeric o]
Required nonkey o]
I

]]

Payroll HRMS |

Seg has ID and Code |=|
Mz | |

NOTES

118

Section 4: Defining Fields

Field definitions, continued

Name field
Name fields may contain both alpha and numeric data.

Name fields:

m Are identified by a DATA-TYPE of NAME (AO).

m Typically have a FIELD-LENGTH of 30.

m Do not require an ENTRY LENGTH, DISPLAY LENGTH, or TEMPLATE.

Required field
Required fields may be any data type. Required fields:

m Are identified by a FIELD TYPE of Required Non-Key (G).
m Follow the rules for the particular DATA TYPE.

119

Cyborg Scripting Language Customization - Participant Guide

Code Field

i
CODE-FIELD

e o]
S
S

] |
s o]

Seg has 1D and Code |—
"g_| i

SO
|

i
CODE-DESCRIPTION

prumerc]
Coeset Descrption]
S

20) |
Foovries]

Seg has 1D and Code |—
"g_| i

[
____&

100310

SO
|

r

NOTES

120

Section 4: Defining Fields

Field definitions, continued

Code field

Code fields must be established in conjunction with the option list in which the
value resides. Code fields:

m Must be defined as a data type of alphanumeric (00).
m Require a CODESET entry to identify where to validate values.
m Have a maximum STORAGE LENGTH of 14.

Code description field
Code description fields display the description from the option list in which the
code field resides and are not part of the segment layout. Code description fields:

m Must have the same field location and field properties as the code field, with
the following exceptions:

e Have a DISPLAY LENGTH of up to 20.
o Are identified with a FIELD TYPE of Codeset Description (D).

121

Cyborg Scripting Language Customization - Participant Guide

Regular Date Field

i
REGULAR-DATE

Regular Date |_
L [=
005 ot
15
(o]:] -
Payroll/HRMS |

Seg has 1D and Code |—
i

[
____&

Mg _|
207310
|
- |

Time-span Date Field

i
TIME-SPAN-DATE

Tirme Span Date |_

L [=

005 ot
15

(o]:] -

Payroll/HRMS |

Seg has 1D and Code |—
"g_| i

[
____&

109420

r

NOTES

122

Section 4: Defining Fields

Field definitions, continued

Regular date field
Regular date fields are used when the date is not a key or partial-key field.
Regular date fields:

m Must be defined with a DATA TYPE of Regular Date (80).

m Require an ENTRY LENGTH equal to the STORAGE LENGTH or blank and
the default is to the greater of the STORAGE LENGTH or DISPLAY
LENGTH. Typically the ENTRY LENGTH is left blank.

m Require a DISPLAY LENGTH. DISPLAY LENGTHSs can be
e 05 MMDD storage format
DD-MM edit format
e 08 YYMMDD storage format
MM-DD-YY edit format for US and Canada
DD-MM-YY edit format elsewhere
e 10 CCYYMMDD storage format
MM-DD-CCYY edit format for US and Canada
DD-MM-CCYY edit format elsewhere
m Require a TEMPLATE of Date (34).

Time—span date field

Time—span date fields are used to display the elapsed number of days, months and
years. Time—span dates are not stored and should be the result of a date
calculation. Time—span dates:

m Must be defined with a DATA TYPE of Time Span Date (81).

m Require an ENTRY LENGTH equal to the STORAGE LENGTH or blank and
the default is to the greater of the STORAGE LENGTH or DISPLAY
LENGTH. Typically the ENTRY LENGTH is left blank.

m Require a DISPLAY LENGTH of 08 (YYMMDD storage format, Y Y-MM-—
DD edit format).

m Require a TEMPLATE of Date (34).

123

Cyborg Scripting Language Customization - Participant Guide

Century Date Field

| Field Maintenance &nd Edit
Action: | —Field Propertie
Field Mame: CEMTURY/COMP-DATE
Data Type: Century/ Complement D j
—Field Laocation
Field Type: -
Painter: 36| J
Storage Length: 006| Template: Date d
Displacement: 015]
Lengths: Display: 10| Entry: |
—Field Option:
hodule: payraoll/HRMS x|
Propagate: d
Structure: Seg has ID and Code L'
Rounding: ;I
Seg/Table ID: MS | Table Separator: |
Header Switch: 112532|
Codeset: |
[~ RDEBMS Field Edit Routine: |

Century Date Calculation

Century is assumed.
YEAR is calculated as:

Jan=L
Feb=K
Mar=1]
Apr=1
May =H
Jun=G
DAY is calculated as:

CENTURY is calculated as:
22 - xx, where xx equals the century being translated. If the DISPLAY LENGTH is not equal to 10, the 20th

99 - yy, where yy equals the year to be translated.
MONTH is calculated using the following alpha character:

Jul=F
Aug=E
Sep=D
Oct=C
Nov=B
Dec=A

32 - zz, where zz equals the day.

NOTES

124

Section 4: Defining Fields

Field definitions, continued
Century date field

Century date fields are usually used when the date is a key or partial key field.
Century/compliment dates cause the most recent occurrence to be shown first.

Because the latest occurrence is the most frequently referenced, this is an efficient
arrangement. Century date fields:

Must be defined with a DATA TYPE of Century/Complement Date (82).

Require an ENTRY LENGTH equal to the STORAGE LENGTH or blank and

the default is to the greater of the STORAGE LENGTH or DISPLAY

LENGTH. Typically the ENTRY LENGTH is left blank.
Require a DISPLAY LENGTH. DISPLAY LENGTHs can be
e 05 MMDD storage format
. DD-MM edit format
e 08 CYYMDD storage format
. MM-DD-YY edit format for US and Canada
. DD-MM-YY edit format elsewhere
e 10 CYYMDD storage format
. MM-DD-CCYY edit format for US and Canada
. DD-MM-CCYY edit format elsewhere
Require a TEMPLATE of Date (34).

Translate automatically when used with the ENTRY, INQUIRY, or PRINT

verb.

125

Cyborg Scripting Language Customization - Participant Guide

Section Summary

= The Solution Series field reports
= Option Lists—field validation
= Field definitions

= Documenting fields

NOTES

126

Section 4: Defining Fields

Section summary

In this section, you learned the components of defining a field to The Solution
Series. Specifically, you learned:

The Solution Series field reports

Option lists—field validation

Field definitions

127

Cyborg Scripting Language Customization - Participant Guide

Section 4 Exercise

NOTES

128

Section 4: Defining Fields

Section 4 exercise
Purpose

This exercise gives you practice using the information you have learned in the

section.

1. Use any of the Online Field Utilities (FTLIST, F-MENU, or F-NAME) to
answer the following questions:

a) What is the Segment Key Field(s) for the Employee Name & Address

Segment, Pointer 30?

b) What type of date is SALARY-EFFECTIVE?

¢) To what does the ENTRY LENGTH field default when left blank?

2. Create an Employee Supplies Option List SCZZ as follows:

Codes
001
002
020
034
035
040

Description
Black Pens/Medium (Box of 10)

#2 Pencils (Box of 12)
Legal Pad of Paper
Post-it Note Pads (3x5)
Scotch Tape

Staples

129

Cyborg Scripting Language Customization - Participant Guide

Section 4 Exercise, continued

NOTES

130

Section 4: Defining Fields

Section 4 exercise, continued

3. Create new field definitions for existing Cyborg fields in order to access
shortened versions of the fields or a specific part of the fields.

Cyborg Field New Field Description
OTHER-NAME XOTHER-NAME-20 The first 20 positions of

the Employee’s Spouse /
Dependent name.

EMPLOYER- XEMPLOYER-NAME-20 The first 20 positions of
NAME the Employee’s Spouse /
Dependent employer.

131

Cyborg Scripting Language Customization - Participant Guide

NOTES

132

Section S: User-Defined Segments

Section 5: User-Defined Segments

Table of Contents
OVETVIEW .ttt ettt a et sht e et e e e bt e et e e she e st e e ebbeeabeesbbesabeenbte e bt enabeanbeens 135
User-defined SEZMENTS OVETVIEWcccuuieiiiiieeiieeiiieeetieeeieeesteeeseteeessaeeesaaeeesseessseessseessseesnseens 137
Data reqUIremMents analYSISeerueeriiierieeieeriie ettt et e st e et e te et e sate e bt e sateebeesateebeesneas 139
User-defined SEZment LAY OULcc.oevuiiiiieiiieiie ettt et e b e s are e e saae e 141
User-defined field definitionscoeeiiiiirieiieeeeeeet e 145
User-defined segment layout—continuation SEZMENt...........cceeeeveeerveeerieeerieeenieeenveeesveessnneens 153
User-defined entry fOIm.........cooiuiiiiiiiiiiii et 155
Verify user-defined definitionsccooviieiiiiiiiiiiiece e e 157
QUETY-related PrOQIAMSccueiiiieiiieiieiiieeteeeteeteeetteeteestteebeesteeeseessseesbeessseesseesssessseessseenseanseens 161
SECLION SUIMIMATY ...eeeivieeiiieeeiiieeeitteeeiteeeetteeetaeeeteeesteeesteeessseeessseeessseeessseeassseeensseesnsseessseeensseesnns 167
SECLION 5 EXETCISE .eeeuvvieeiiieeiiieitieeeieeeeteeesreeesteeesaseeesaseeessaeasseeasseeasssseasssseesseeessseeessseeensseeennns 170

133

Cyborg Scripting Language Customization - Participant Guide

Objectives

» Identify the steps to create
user-defined fields/segments

= Analyze user-defined data requirements
s Create a user-defined segment layout

» Create new field definitions
for a user-defined segment

= Create a data entry form for
a user-defined field/segment

= Verify the user-defined definitions
s Create a FIND- verb

s Create Solution View (WRITER)
cross-reference records

NOTES

134

Section S: User-Defined Segments

Overview

Purpose

In this section, you will learn the steps to create user-defined segment fields and a form for
data entry of the fields.

Objectives
When you complete this section, you will be able to do the following:

Identify the steps to create a user-defined field/segment
Analyze user-defined data requirements

Create a user-defined segment layout

Create new field definitions for a user-defined segment
Create a data entry form for a user-defined field/segment
Verify the user-defined definitions

Create a FIND- verb

Create Solution View (WRITER) cross-reference records

135

Cyborg Scripting Language Customization - Participant Guide

Creating User-Defined Segments

= Analyze the data requirements
s Create the segment layout

» Create the field definitions

» Create the data entry form

= Enter data into the fields
through the data entry form

NOTES

136

Section S: User-Defined Segments

User-defined segments overview

User-defined segments

The Solution Series provides the capability to create user-defined segments for
the company and employee records. To create user-defined segments complete
the following procedure:

m Analyze the data requirements

m Create the segment layout

m Create the field definitions

m Create the data entry form

m Enter data into the fields through the data entry form

RDBMS users

If user-defined segments are created using the Field Maintenance And Edit form
(F-NAME), the COBOL programs that access the fields will need to be re-
generated and the relational tables must be re-built before the new fields/tables
will be accessible to The Solution Series.

The Solution View New Fields Definition program (NEWSCR) may be used to
create user-defined fields/tables dynamically.

& Refer to the Technical Administration documentation for further information.

137

Cyborg Scripting Language Customization - Participant Guide

User-Defined Request and Analysis

MEMO
To: Mike Pahud, Cyborg Online Programmer
From: Joy Ross, HRMS Coordinator
Subject: Tracking Work-At-Home equipment

With the implementation of our new Work-At-Home policy, it will be necessary to track any company equipment being
used by employees in their home offices.

To keep the data entry and maintenance requirements to a minimum, we would like to integrate this data into The Cyborg
Solution Series system since it already contains information such as the employee’s number, name, and address.

The Work-At-Home information to be maintained should include a description of the equipment, an equipment category, a
serial number, the date the equipment was issued, and the date the equipment is returned. It is feasible that each employee
will have several different types of equipment in their home, such as computer, fax machine, printer, and so forth. I have
already created an Option List named WHOI that contains the equipment categories to be used.

If you have any questions, please contact me at extension 1231.

NOTES

138

Section S: User-Defined Segments

Data requirements analysis

Data requirements

The first step in creating user-defined segment fields is to analyze the data
requirements. This analysis will include questions to help understand how and
where the data is to be stored:

Does the data need to be stored in each employee’s record or simply at the
company level?

Are there existing Cyborg-delivered segments/fields to accommodate the
requirements?

Does the data require more than one instance or a history of past information?

If the segment is multiple-occurrence, what field(s) uniquely identifies one
segment of data from another?

Do any fields require validation? Are any fields required?

Example analysis
Analysis of the above memorandum using the analysis questions provides the
following data requirements for the user-defined segment:

The data is to be stored in each employee’s record.
There are no existing Cyborg fields to satisfy this request.

Employees may have more than one item of equipment at their home.
Therefore, the data requires a multiple-occurrence segment structure.

A counter could be used to uniquely identify each occurrence of Work-At-
Home equipment.

The equipment category will be validated using an option list, and the serial
number is required.

139

Cyborg Scripting Language Customization - Participant Guide

User-Defined Segment Layout

Company Segment Layout

[CIB'[K|K[* [[K|K[*[¥|K|<[][¥|D|P[PD|D|P|DD|D|D|D|D|D|D|D|D|B|D|D|D|D|D|D|D|D|DD|D|D|D|D|D|D|D|D|B|D|D|D|D|D|D|D|D|DD|D|D|D|D|D|D|D|D|B|D|D|D|D|DD|D|D|D[D|D|D|D D]

Somn—
[SYT N
So—
Soe
S~ao
Sr®
(ST
S0
S~
S~
(1N

S
S~e
[YteTe}
Swv®
SO~
Swvwv
S
Swo<
Swom
swoa
Swo—
sve
sSwno
Swno
[SIRTN
Swnw
S
S0
Swnm
Sna
Swn—
Sne

ST®
(S
S0
SN
o<
S<n
(SR 2N
S<T—
STe
Snao
Sno
S
Smo
Smn
Sn<
Snm
Sna
on—
Sne
sao
Saw®
Sar
Saro
Sawn
Sa
Sam
[SYNEN]

Segment Data

Sa—
sae
S—a
S—m
S—r~
S—0
o—1n—l
&—r—
S—mn
®—a
S

000
001
890

000
000
567
Segment Key

0
Q
4

0

0

T
Segment Code

00
00
l[j

S

Segment Type

Employee Segment Layout

[L[['[¥]¥|¥|¥|K|K|K|K|K|#|K]§|D[P|D[P|D[P|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|P|D|P|D]

She—
[=TteYel)
Sva
(=TT
Svo
SV
Swo
Svn
swva
S0—
cve
Swno
Swna
S
Sno
SBvn
(=Tl
Snn
ona
Sn—
one

oo
o~
oTo
(=3 4%
o<
oTmn
(=R 4N
o —
ove
Smao
Smao
Sm~
Smo
[=T1%)
Sm<
omnmn
Sma
omn—
ome
(=Y 1=
Sno
Sar
Sno
Sawn
S
Sam
S

Segment Data

So—
Sne
S—o
S~
S~
o—o
o—n—l
®—r—
S—mn
®o—a
S

000
001
g90

000
200
567

Segment Key

0
Q
4

0

")

7
Segment Code

00
00
l[j

ose

Segment Type

NOTES

140

Section S: User-Defined Segments

User-defined segment layout

Segment layout
The second step in creating user-defined segment fields is to construct a segment
layout for the user-defined segment.

m The segment layout must always begin with the segment type and segment
code beginning at displacement 000:
Company Level 84 maximum length
C segment type, pointer 23
Bx or Cx segment code
Employee Level 71 maximum length
L segment type, pointer 36

Lx, Mx or Nx segment code
Where x is an alphanumeric character.

m Segment key fields, if any, must follow the segment type/code on the segment
layout beginning at displacement 003. If you are creating a single-occurrence
segment, place your data fields after the segment type/code and designate the
first field with a FIELD-TYPE =J.

m Segment keys can be a maximum of 15 characters long, however the segment
type and code already use 3 displacements leaving 12 for the user-defined
segment key.

m Data should not be placed in the last two positions of the segment. These
positions may be used by payroll processing to determine if changes have
occurred in the segment.

141

Cyborg Scripting Language Customization - Participant Guide

Segment Layout—Example

Employee Segment Layout - Work-At—-Home Example

e e e e e e e e e e e e e e L A L) Y K R M L I R
P000Q0000000000000000000000020
200000000601 111 111111222222222233333333334444444444555555555566666666667
012347678901234567890123456789@123??678??12345678‘|3l|31234??789@]?3456789?
L‘J | | | I I
XEQUIP-NBR (Key) XEQUIP-DESCR XEQUIP XEQUIP-SERIAL-NBR XEQUIP XEQUIP. Unused
CATEGORY (Required) ISSUE RETURN
Segment Code (WH2 1) DATE DATE
Segment Type

NOTES

142

Section S: User-Defined Segments

User-defined segment layout, continued

Segment layout example

The above example shows the result of populating the segment layout with the
information derived from the analysis and memo requirements.

m The segment layout shows the physical structure of the segment.

m This step is critical in our process to create a user-defined segment since it will
be used in subsequent steps, for example, creating the field definitions.

143

Cyborg Scripting Language Customization - Participant Guide

Equipment Number

i
¥EQU | P-NBR

|
_____ &

106332

I/

i
¥EQUIP-DESEC

|
_____ &

100110

I/

Nomerc 0 Decimas]
Koy-traing/Ony Key]
S

] |
Forowries]

Seg has |10 and Code l_
(S i

e]
S
S

] |
Forowries]

Seg has |10 and Code l_
(S i

NOTES

144

Section S: User-Defined Segments

User-defined field definitions

Define fields

The third step in creating user-defined segment fields is to define the fields to the
Field Name Table. This step is accomplished by using the Field Maintenance And
Edit form (F-NAME).

Field example
The segment layout is used to help determine the field’s definition. The following
describes each field’s definition:

XEQUIP-NBR
This field is a key field that contains two digits. Its display length is two positions
with 0 decimals and is edited as: 99.

XEQUIP-DESCRIPTION

This field is an alphanumeric field that contains 30 characters.

145

Cyborg Scripting Language Customization - Participant Guide

Equipment Category
[Field Mainterance And bt]
: B
KEQUIP-CATEGORY ,_
=
[
| |

Payroll/HRMS ~|

S
—— ezt D toce o]
i

206131

i
KEQUIP-CATEGORY - DESC

e]
oot Descrption]
e]

20) |

- PayrollsHR MS d
|_ Seg has |10 and Code l_
— L1 | i

100110
WHOL
I |

NOTES

146

Section S: User-Defined Segments

User-defined field definitions, continued
XEQUIP-CATEGORY

This field is an alphanumeric field that contains five characters. It is edited
against option list WHO1.

XEQUIP-CATEGORY-DESC

This field is an alphanumeric field that contains 20 characters. It is a value found
in option list WHO1. This field displays the description from the option list
translation of the XEQUIP-CATEGORY field.

Note: The option list description is not part of the segment layout. The option list

description is found in the option list and is referenced by the use of the option
list field.

147

Cyborg Scripting Language Customization - Participant Guide

Equipment Serial Number

i
KEQUIP-SERIAL - NEFR

Alphanurmeric |_
Required Mon-key a
i -
040
| |
Payroll/HRMS |

R
Segnus D cose]

B
|

306110

Equipment Issue Date

|
KEQUIF-1SSUE-DATE
Century/ Complement O |—

=]
08 owe o
50 =
Py]
segtes Do]

-
I
= i

306121

NOTES

148

Section S: User-Defined Segments

User-defined field definitions, continued
XEQUIP-SERIAL-NBR

This field is an alphanumeric field that contains ten characters.

XEQUIP-ISSUE-DATE

This field is a century complement date field that contains six digits and is
retained on the file in CYYMDD format. It is displayed as MM-DD-CCYY in
the US and Canada, DD-MM-CCYY elsewhere.

149

Cyborg Scripting Language Customization - Participant Guide

Equipment

Return Date

| Field Maintenance &nd Edit

Action: —Field Propertie:
Field Mame: XEOUIFP-RETURN-DATE
Data Type:
—Field Laocation
Field Type:
Painter: 36|
Storage Length: 006| Template:
Displacement: 056]
Lengths:
—Field Option:
hodule:
Propagate: d
Structure:
Rounding: -
_I Seg/Table 1D:
Header Switch: 406121)
Codeset:
¥ RDEBMS Field Edit Routine:

Century/ Complement O j
=l
Date d
Display: 10| Entry: |
Payralls HRMS x|
Seg has 1D and Code L'
L1 | Table Separator: |
—
M—

NOTES

150

Section S: User-Defined Segments

User-defined field definitions, continued
XEQUIP-RETURN-DATE

This field is a century complement date field that contains six digits and is
retained on the file in CYYMDD format. It is displayed as MM-DD-CCYY in
the US and Canada, DD-MM-CCYY elsewhere.

Update FILECL

The Client File (FILECL) must be updated to include the new field definitions
before Form Builder can use them. The EDIT program does not automatically
update the Client File. To update the Client File:

Make the following selections from the Navigator:

Component: '@ User Tools
Process: User Tools
Task: Refresh Client Data

Result: ---Sign-on Completed--- is displayed on the form.

151

Cyborg Scripting Language Customization - Participant Guide

User-Defined Segment Layout
Continuation Segment

Employee Segment Layout - Continuation Segment

[L[M[B[K|K[K[<|K[K|K[¥]K[¥|K]K[P]P|P|P|D|D|D|P|O|D|D|D|D|D|D|D|R|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|R|D|D]D|D|D|D|B|D|D|D|D|D|D|D|D|D|D|D|D|
000000 QOEO0DR00000000000000000G0000A0000000000000G000000Q000QB00000000QGDO
@00 00G0QOOO ! 1111111112222222222333333333344444444445555555555666666666067
@1234567800123456780012345678001234567800123456780012345678001234567890

Segment Key Segment Data
Segment Code
Segment Type

[<[€]K[¥|¥[[p[D[D[D|DD|D|D|D|DID|D|D|D|D|D|B|D|B|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|B|D|D|D|B|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D D]

00C0Q0000000000000

{111111111222222222233333333334444444444555555555566666666606

01234567680012345676060123456780012345676901234567800123456789
| |

— o=

Segment Key
Segment Data

Segment Code
Segment Type

NOTES

152

Section S: User-Defined Segments

User-defined segment layout—continuation segment
Large segment layouts
As you recall, each user-defined segment has a fixed length (Company level C
segment 84 positions, Employee level L segment 71 positions). If the user-defined
segment you are creating requires more than the fixed length, you may use
additional segments to continue the segment definition.

m When you use more than one segment code, you must follow these rules:

m Define field definitions for the key fields from the first segment on the second
and subsequent segments, using the exact same field formats but different field
names.

m Additional coding will be required to delete the additional segments since the
system will delete only one segment for you. See the Spouse/Dependent
Information form (10-SCR) for an example.

m RDB users using Solution View to create new segments would define each
segment one at a time.

153

Cyborg Scripting Language Customization - Participant Guide

Create Data Entry Form

SECURITY.Q@ Work-at-Home Inventory

P100-START-SCREEN. Fg'rf Tﬁ F* F: Fﬁ Fﬁ Tﬁ T,

Work-at-Hone Equipnent Inventor

KEY-REQUIRED.

UPDATE-EMPLOYEE.
NEW-SCREEN-STYLE.

SCREEN-SECTION '0'.

IF INQUIRY-MODE OR SELECTION-MODE

GO TO P990-INQUIRY-SCREEN.

P200-ENTRY-SCREEN.

SCREEN-SECTION '1'.
P300-VERIFY.

SET-FOR-MESSAGES .

IF ERRORS-EXIST RETURN.

IF RECORD-NOT-UPDATED

RETURN.

CALL ‘XXXXXX’. @ EDIT ROUTINES ENEIENEN =G RN
Work-at-Home Equipment Inventor

RETURN.

P990-INQUIRY-SCREEN.
SCREEN-SECTION ‘8'.
RETURN.

P999-PROMPTS.

SCREEN-SECTION '9'.

NOTES

154

Section S: User-Defined Segments

User-defined entry form

Data entry form

The fourth step in creating user-defined segment fields is to create the data entry
form for the fields to be updated. This program will be created using the form
design application, the Edit Utility (EDIT), and the verbs and techniques
discussed in Section 3.

Remember, even though you may be creating a single-occurrence segment, the
segment physically resides in a multiple-occurrence segment (Company C
segment, Employee L segment). Therefore the following rules apply:

m All key fields must precede the non-key fields.

m [f more than one segment is included on the form, fields from different
segments must be placed on separate data entry lines or in separate sections.

Context-sensitive menus
An optional step in creating user-defined segment fields is to create the context-

sensitive menus for the entry form. These are created using the Edit Utility
(EDIT) as discussed in Section 3.

155

Cyborg Scripting Language Customization - Participant Guide

Data Entry Form
Entry and Inquiry/Select Mode
Entry Mode

[wiork-at-Home Equipment Inventory ALSTIM, STEWERM

Equipment hbr= :L_j

Description: Compag LTE 5000 |

Category: Computer |
Serial Mumber: 110783950)
lssue Date: 01-01-1998|
Return Date: |

Save Thiz Form
Select An Emplopee...
Show selection

Cormpany Perzonal Property

Company Automobile Information

Inquiry/Select Mode

Equipment e Serial
Muber Description Category Number
a ol Compag LTE 5000 Computer 110783980
o 0z HF Laserjet Frinter DI2736544
o 03 %2 Technology Hodem T4THIT

NOTES

156

Section S: User-Defined Segments

Verify user-defined definitions

Verify form and fields
After creating the data entry form program, it is necessary to verify that the
program functions properly. This verification includes:

m Valid values can be entered into each field:

Date fields require data in YYMMDD or MM—-DD-YY format for the US
and Canada, DD-MM-Y'Y eclsewhere.

Numeric fields accept the proper number of integers and decimals. Results
are displayed on the form properly.

Name fields require data in Last, First format.
Required fields must be entered, otherwise an error occurs.
Option list fields are edited against an option list.

Option list description fields display the code descriptions properly.

m Multiple-occurrence segment forms require the following navigation functions:

Inquiry/Select mode—(Actions|Select or right click |[Show selection)
Display Next Page—(Actions|Next Page)
Display Previous Page—(Actions|Previous Page)

First Entry—(Actions|First Entry)

157

Cyborg Scripting Language Customization - Participant Guide

Segment Layout Form (LSEGS)

0. .+, ..10.. .. +...20...
LL101Compag LTE 5000
LL102HF Laserjet

LL103¥2 Technology
LO100204AUSTIN, JULIANKNE
Lozooz

LO3002

LO400OLAUSTIN, JOHH L.
LO50011321 AN BUREN AFT 392
LOGO0OLSTRUTHERS . DR. LOUIS
LO70015 PINE GROYE
LPR2O0OK1S101 Hives
LED211129072111290321112701

L+ .30

LZB218HO7DO200 2

o0+ 500+ B0+
000011 JDFE39801 2010351
00002092736544 201131
000037 47H37 201031

3582-67-4453 F234405312972-0739F

312339-5324

CHICAGD, IL 60604
312843-0021
CHICAGD, IL 60603

110164-101-4U5 004010YWARH

LWG215K310604215 1 11IMAIN FLANTOS40 0007215K2E
LWA200203107001Fhotograph oo0o0ooo01o0
LWAS00203107001)ob Evaluation oo0ooooo0le
LZ72154289 121 03 00015000215B0402

LZ5215E04171010FPASS S1000FASS S2947L0W S3000FASS
LZa221a1525654-45 20 312971992331245418651121FDEL

¥o21

.70

NOTES

158

Section S: User-Defined Segments

Verify user-defined definitions, continued

Verify segment layout

The final verification step is to match your original hard copy segment layout to
the physical layout of the segment. This is achieved through the use of the
Segment Layout form (LSEGS).

The Segment Layout form (LSEGS) allows you to view all Human Resource and
user-defined information, by segment, for an employee. This form can be used to
check the layout of a particular segment code and its information.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Employee Database Utilities
Task: List Employee L Segments

Result: The Employee Selection Form displays.
Use the following key fields to display the L segment layout information.
Number Field Type an employee number. OR
Name Field Type an employee name.
Choose OK or press Enter.

Result: The Segment Layout form (LSEGS) is displayed with a list of all the
Human Resource and user-defined L segments for the employee number in the
Key field.

159

Cyborg Scripting Language Customization - Participant Guide

Create a FIND- Verb

NOTES

160

Section S: User-Defined Segments

Query-related programs

Create a FIND- verb

The Create A FIND Verb program (MKVERB) enables you to create a FIND—
verb. A FIND- verb locates the most recent occurrence of data in an L segment
code (Pointer 36) when the first key field is a date in complement form.

When you use MKVERB to create a verb, The Solution Series assigns it a name
using this general format:

FIND-CURRENT-Lxx-SEG, where xx is the segment code.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: © Create a FIND Verb

Result: The Make a ‘Find Current Occurrence’ Verb form is displayed.
Use the following form fields to create a FIND Verb

Segment Code Type the segment code for the segment, for example, L1.
Module Code Type the segment’s module code.
Choose OK or press ENTER.

Result: The ----COMPLETE---- message appears and the FIND-CURRENT-
Lxx-SEG verb is created.

161

Cyborg Scripting Language Customization - Participant Guide

Create the Segment Cross—Reference

HED - HAHE

COMPANY -HED - NUMEER.
[
= e

Saper i

NOTES

162

Section S: User-Defined Segments

Query-related programs, continued

Segment cross—-reference
The Cross Reference Data Entry form (D-XREF) provides fields into which user-

defined segment information must be keyed if the data is to be accessed by the
Solution View (WRITER) program.

Procedure to access D-XREF
Make the following selections from the Navigator:

Component: @ Development Tools
Process: Fields and Verbs
Task: Segment Cross Reference

Result: The Cross Reference Data Entry form (D-XREF) is displayed.

Field description
There are four entry areas on the form:
s A NON-KEY DATA NAME—Identifies a non-key field for the user segment.

m FIND-CURRENT-OCCURRENCE verb—Identifies a unique verb for the
multiple-occurrence segment.

s READ TABLE verb—Identifies a unique READ verb when creating a table
cross-reference.

s ALL KEY FIELDS FOR SEGMENT—Identify all fields that have been
defined as keys to the segment in key order.

163

Cyborg Scripting Language Customization - Participant Guide

Create Cross-Reference Records

KBILL-TO-DEFT
FIND-CURRENT - LHS - SEG)

XORDER-DATE KORDER-HO

NOTES

164

Section S: User-Defined Segments

Query-related programs, continued
Using D-XREF
To create the cross-reference records:

Selection: Step:

A Non-Key Data 1. Type the name of a non-key field to the segment.

Name

Find-Current- 2. Type the name of the FIND-CURRENT-Lxx-SEG verb.

Occurrence Verb

All Key Fields for 3. Type the name of all key fields for the segment.
Segment

4. Choose OK or press Enter.

Result: The form is returned with no form data or an error message.

165

Cyborg Scripting Language Customization - Participant Guide

Section Summary

» User-defined segments overview
» Data requirements analysis

» User-defined segment layout

NOTES

166

Section S: User-Defined Segments

Section summary

In this section, you learned the steps in creating user-defined segments.
Specifically, you learned:

User-defined segments overview

Data requirements analysis

User-defined segment layout

167

Cyborg Scripting Language Customization - Participant Guide

Section Summary, continued

» User-defined field definitions

» User-defined entry form

= Verifty user-defined definitions
s Create a FIND- verb

= Create Solution View (WRITER)
cross-reference records

NOTES

168

Section S: User-Defined Segments

Section summary, continued
User-defined field definitions

User-defined entry form

Verify User-defined definitions

Create a FIND- verb

Create Solution View (WRITER) cross-reference records

169

Cyborg Scripting Language Customization - Participant Guide

Section 5 exercise

Employee Segment Layout

S
SO
SW0a
SO~
SO0
SO
SO
SOm
SO~
SO —
SOS®
SNo
SN
S
SN0
SV
SN
Snm
SV
SN —
onNe
ST
< a
LR
SO
S
S <<
S<tm
Sty
S —
SIS
Smc
Sma
S Mk
SmMO
SmMn
Smsr
e@mnm
@mn
SmM—
omMe
SNy
S oG
SO
SO
SN
SN
Scum
Sy
SN—
SNS
S—0O
S—a
S—M~
S—\O0
S—
S—=r
S—m
o—0
[p——
e—e
oo
Seow
SO
S0
Soowm
So
Sem
[=I=TeN]
OSS—
(=it

NOTES

170

Section S: User-Defined Segments

Section 5 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

Y our company has decided to computerize the ordering of office supplies. The
office supplies will be ordered by each employee using a data entry form. Later a
report will be created for each employee, to be used as the order form for the
supplies.

1. Create a form that displays the following fields and allows them to be updated.

Field Nbr of Characters (Field Length)
ORDER DATE (CYYMDD) 6

ORDER NUMBER 6 (Alphanumeric)

BILL TO DEPARTMENT 30 (Alphanumeric)

OFFICE SUPPLY CODE 3 (Alphanumeric)

OFFICE SUPPLY DESCRIPTION 20 (Alphanumeric)
AMOUNT ORDERED 4

ORDER PRICE 9

Key fields

s ORDER DATE
s ORDER NUMBER

Title
Office Supply Order Form

Option list validation
OFFICE SUPPLY CODE is to be validated against the Option List SCZZ created
in the Section 4 Exercise.

Employee name display
Display the employee name (in inquiry) at the top of the form.

2. Write a form program that will display the form you designed and create
context-sensitive menu records for navigation to related forms.

3. Create a FIND- verb and a Solution View Cross-reference record for your new
segment, if appropriate.

171

Cyborg Scripting Language Customization - Participant Guide

NOTES

172

Section 6: Customization Basics Plus

Section 6: Customization Basics Plus

Table of Contents
OVETVIEW .ttt ettt a et sht e et e e e bt e et e e she e st e e ebbeeabeesbbesabeenbte e bt enabeanbeens 175
PrO@Iam PrOCESSINE. ... viiiiiieeiiieeiiee ettt e ettt e ettt eette e e tteesteeestaeesssaeessseeeesseeessseesasseeensseeensseeennsens 177
FOIM MESSAZES ... ettt ettt e st e st e st e e st e e sabaeesaneeeaneas 179
Creating report parameter entry forms (RGMSTR)ccciiiiiiiiiiiiiiieceecee e 193
SECLION SUMIMATY ...eeevvieeiiie ettt eiteeeiteeetteeetteeetteesteeesteeessseeeasseeensseeesseessseeensseesnsseesseeennseesnnns 195
SECTION 6 EXETCISE ...euveeerieniieeiieeitieeiteesite et e sttt et e e sttt e bt e sateebeeeabeenbeesabeebeesabeensbesabeensbeenbeesaeeaseens 197

173

Cyborg Scripting Language Customization - Participant Guide

Objectives

» Identify the operation of building a
form and processing form input

= Create error messages
and documentation

NOTES

174

Section 6: Customization Basics Plus

Overview

Purpose
In this section, you will learn special form techniques.

Objectives
When you complete this section, you will be able to:

m [dentify the operation of building a form and processing form input.

m Create error messages and documentation.

175

Cyborg Scripting Language Customization - Participant Guide

PROGRAM PROCESSING
Ptr 14 @ Ptr 7

WORK
data from screen _—

Command Line

Ptr 11

SCREEN
build area \

Employee

v
Record Ptr8 Ptr 28 - 37
Audit 1/0 Area —_— Employee Record Segments
Record D E—

&

NOTES

176

Section 6: Customization Basics Plus

Program processing
1. User requests form by pressing Enter or clicking OK.

2. System moves the data entered on the form, including the command line, to
WORK (Pointer 14).
System saves the command line in Pointer 7.
System transfers control to the requested online form program.

3. Form program gets employee record from FILEO2 through Pointer 8 to the
employee memory area and sets segment pointers 28-37.

4. For each entry field on the form:

a) Form section verbs take the data from WORK, if not blank, and updates
the record fields:

o Saves the key values.
e Locates the correct segment based on the key values.
o Inserts the segment if it does not exist.
e Updates the RECORD-UPDATED field to indicate update.
e Verifies Option List values, inserts leading zeros.
e CALLs field edit routines.
b) Form sections move data from record fields to SCREEN (Pointer 11).

5. Ifupdates were entered and no system errors were found, the online
program’s relational edits are processed.

Control is RETURNed to CYB90x.

7. Ifno errors exist and RECORD-UPDATED="Y", the FILEO2 record is updated
and an Audit record (ZI/ZZ) is created.

8. The (re)built form is sent to the terminal from SCREEN (Pointer 11).

177

Cyborg Scripting Language Customization - Participant Guide

Form Messages

= Reject
= Warning

= Message

NOTES

178

Section 6: Customization Basics Plus

Form messages

Description

Cyborg Scripting Language (CSL) enables you to perform simple and complex
relational editing to verify data on input. If a user enters incorrect or illogical
data, the system issues one of these three kinds of error messages:

Reject (R)

Indicates errors that the user must correct before the system will process the form.
The user can choose to quit the form without updating by pressing CANCEL or
by entering a Q in the action field in the command dialog box.

Warning (W)

Indicates errors that stop processing. The user can choose to correct the error or to
accept the data by pressing ‘Yes’ on the Override Warning dialog OR by entering
an A in the action field in the command dialog box.

Message (M)

Provides information only. These messages do not require the user to take any
action.

This topic describes:

m Creating and documenting messages.

m Displaying messages.

179

Cyborg Scripting Language Customization - Participant Guide

Creating Error Messages Using EDIT

Record Group Name Format: ERRxxy

Where: ERR Is a literal value
XX Specifies the module code
y Identifies the message type: R, W, or M
| Edit Uitility
Object: Error Messages LI

Object Key: ERRHRE, |

COMMAND: | |
S5eq SC Error Documentation MessagefText

| ooooof | Human resource base module reject error messages |

| 0oloof | HROO1R: Activity Code entered is not & new hire code |
0o102| The Activity Code vou have entered does not fall within theE

00110| range of acceptable codes for a New Hire. The valid

00120 | Activity Codes for the 01-5CR screen are 001 through 00x.

| 00130] | These codes identify the activity as a New Hire. 2

00145] | 5ee Option List HROS to select the code which applies for A

00150 | this employee.

| ooz2oof HREOO2R: Activity is not allowed for current employee status
00205) | The Activity Code you have entered is not acceptable for E|

o020 | Resulting Employee Status Code on the employee's Master

| 0ozz20f | Record. 2

002 30 See the TF-S5CFE Table entry for the Activity Code ywou have &)

002 40| ehtered to detemine which Resulting Employee Status Code

00250 iz valid. If the Resulting Employee Status of the employee

| oo260| | should be valid for the Activity Code you have entered. add

00270 that code to the TF-SCR Table record for the Activity Code.

002 50 If not, see Option List HROS to select the proper Actiwity

| 00290] | Code.

NOTES

180

Section 6: Customization Basics Plus

Form messages, continued

Creating messages

You may use existing Cyborg-delivered messages, add to Cyborg-delivered
message groups, or create your own message groups. The Edit Utility form
(EDIT) is used to access the record group with an Object of Error Messages (P/R)
and an error record group of ERRxxy.

Make the following selections from the Navigator:

Component: @ Development Tools
Process: Programming Utilities
Task: & Edit Control Repository Objects

Result: The Edit Utility form (EDIT) is displayed.
Use the following Edit Utility form (EDIT) fields to create an option list
Object Select Error Messages (Object=P/R).
Object Key Type the error message record group to be edited in ERRxxy format.
Choose OK or press Enter.
Result: The Option List Edit form is displayed.
EDIT columns

The Edit Utility form (EDIT) for error messages is in a different format than the
source code. The column definitions are:

s Line Command
Specifies whether you are adding, changing or deleting the line.

m Seq
The Sequence Number is used to identify the error message and associated
error documentation.

s SC
The Sequence Code is used by the system; no entry should be made here.

m Error Documentation Message/Text
Used to enter the error message and error documentation.

Alternate language messages

Alternate language messages may be created with EDIT by using the Alt Lang
Error Msgs object (Object = P/Q) instead of Error Messages (Object = P/R).

181

Cyborg Scripting Language Customization - Participant Guide

Error Message

COMMAND: | |

L

Seq SC Error Documentation Messagef/Text
0100} | PRZ0OLR: ERROR MESSAGE

=

(]

|———Error Message Text

Message Type Code
Message Number

Module Code

Message/Documentation Indicator

Message Mumber

Error Message Format:

Where:

XX

XxXnnny

Specifies the module code
Identifies the message’s Edit sequence number, which must end in 00:

Specifies the message type: R, W, or M.

NOTES

182

Section 6: Customization Basics Plus

Form messages, continued

Error messages

Error messages are displayed by special CSL verbs that use the data in the Seq
(Sequence Number), and Error Documentation Message/Text columns to
uniquely identify each error message.

Sequence number convention
The sequence number conventions are:

m The first 3 positions represent the message number.

m The last 2 positions represent the Message/Documentation Indicator. If the last
2 positions = 00, the Error Documentation Message/Text column contains the
message, otherwise it contains the message documentation.

Message conventions
The Error Documentation Message/Text error message conventions are:

m The first 6 positions contain the Message ID, which is made up of a Module
Code, Message Number, and Message Type Code as detailed above. The
Message IDs Message Number must be the same as the first 3 positions of the
SEQ field.

m The 7th through 8th positions must contain a colon (:) followed by one space.

m The 9th through 60th positions contain the message text. Message text should
be helpful to your users. Often a short, one-line message can convey enough
information to enable users to correct an error without having to request more
documentation.

Additions to the Cyborg-delivered message group are assigned sequence numbers
MO0 through Z99.

183

Cyborg Scripting Language Customization - Participant Guide

Error Message Documentation

COMMAND: | |

Seq SC Error Documentation Messagef/Text
00102| | Message Explanation. ..

00104] | Message Explanation continued.. .
00106] | Recommended Action. ..

o1og] | I?ecommended Action continued. ..

=|ra|m

I— Messzage Documentation

Message/Documentation Indicator
Message Humber HeadingsS/Carriage Control—

—-

lilii

NOTES

184

Section 6: Customization Basics Plus

Form messages, continued

Documenting messages

Most messages have accompanying documentation that explains the message
more fully and recommends the action the user should take. This documentation
resides below the message text on lines with sequence numbers that share the
same first three digits as the message, but end with numbers from 01 to 99.

Sequence number convention
The Sequence Number conventions for message documentation are:

m The first 3 positions represent the Message Number.

m The last 2 positions represent the Message/Document Indicator that must have
a value from 01 to 99 for the message documentation.

Message documentation conventions
The Error Documentation Message/Text error documentation conventions are:

m The first 59 positions may contain the error message documentation text.
m The 60th position is reserved for Headings/Carriage Control codes.

o Heading Codes—E indicates the start of the explanation; A indicates the
start of the recommended action.

o Carriage Control—blank tells the system to single space; a value of 2 tells
the system to double space after the associated line.

185

Cyborg Scripting Language Customization - Participant Guide

Error Message Processing

SECURITY. @ Sample Program
P100-START-SCREEN.
KEY-REQUIRED.
UPDATE-EMPLOYEE.
NEW-SCREEN-STYLE.
SCREEN-SECTION '0'.
IF INQUIRY-MODE OR SELECTION-MODE
GO TO P990-INQUIRY-SCREEN.
P200-ENTRY-SCREEN.
SCREEN-SECTION '1'.
P300-VERIFY.
SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED
RETURN.
CALL ‘XXXXXX’. @ EDIT ROUTINES
RETURN.
P990-INQUIRY-SCREEN.
SCREEN-SECTION '8'.
RETURN.

NOTES

186

Section 6: Customization Basics Plus

Form messages, continued
Displaying messages
To display a message on the user’s terminal you must add coding to your program
to:
m Set the placement of the message
m Check for system errors
m Check for user input into the form

m Display the message

Message placement
The SET-FOR-MESSAGES verb is used to determine where error messages
should begin on the form and positions the FORM pointer 11 past the last line.

Check for system errors

The second step in coding for error messages is to verify that no system level
errors have been found. The ERRORS-EXIST Boolean expression checks the
value of the SCREEN-ERROR field to be not equal to an F. This field is initially
set to F before the form is painted. If an error is found on the form, the value is
changed.

Check for user input

The RECORD-NOT-UPDATED Boolean expression checks the value of the
RECORD-UPDATED field for a blank. This field is initially set to a blank when
a form is painted. If any data is detected by an ENTRY verb, itis setto Y.

187

Cyborg Scripting Language Customization - Participant Guide

Error Message Subroutine

Reject Warning Message

Format | o o INT-REJECT xx999'. | FO™! | pRINT-WARNING 'xx999'. | FO™! | pRINT-MESSAGE 'xx999',

Form Message—Error

Form Message - Error: SECURITY. @ Error Subroutine
IF FIELD-4 EQUALS '00' OR 'Ol' AND
FIELD-W IS GREATER THAN :1000.00
PRINT-REJECT 'PRZ01' RETURN.
IF FIELD-X IS LESS THAN :10
PRINT-WARNING 'PRZ01l' RETURN.

NOTES

188

Section 6: Customization Basics Plus

Form messages, continued

HINT:

Display message

The final step in coding for error messages is to create a subroutine program that
will test for and display the message. Message statements must include one of the
following verbs, depending on the type of message you want to display:

s PRINT-REJECT
To access and display reject and file error messages.

s PRINT-WARNING
To access and display warning messages.

s PRINT-MESSAGE
To access and display memo messages.

The message verb identifies the kind of message you want displayed.

The message ID specifies the message you want displayed. Enclose this literal
value in single quotation marks ('..."). You do not have to include the message
type (M, R, W) in your statement.

Because the number of form lines is limited, it may not be possible to display all
messages at once. Therefore, it is recommended that you display messages in
groups by severity order and require correction of the errors in a group before
proceeding to the next group, for example, Rejects, then Warnings, then
Messages.

189

Cyborg Scripting Language Customization - Participant Guide

Field Error Subroutine

| Field Maintenance Lnd Edit

Action: | —Field Properties
Field Mame: >aLaRY |
Data Tpe: Wumeric 2 Decimals LI
—Field Location
Field Type: -
Pointer: 32| _I
Storage Length: 008| Template: - - - - - 99 LI
Displacement: 046
Lengths: Display: 11 Entry: |
—Field Optioh:
Module: Payrolls HRMS |
Propagate: LI
Structure: Seg kas 1D only ;I
Rounding: LI
Segi/Table |D;] Table Separator: |
Header Switch: 100310
Codeset: |
[~ RDEMS Field Edit Routine: XSAL |
Example 1: Salary maximum error
SECURITY. @ Salary field edit subroutine

IF W8-08-240 GREATER THAN '09999999'
MOVE '@' TO SCREEN-ERROR

MOVE '@' TO W8-01-480

MOVE '@PRRZ01' TO wW8-07-330.

RETURN.

Result: PRZO01R: Salary cannot be greater than 99,999.99.

Field Message Format: @xxRnnn

Where: @ = at-sign
XX = Specifies the module code
y = Specifies the message type: R
nnn = Identifies the message’s number

NOTES

190

Section 6: Customization Basics Plus

Form messages, continued

Field error subroutine
As you recall, when defining a field you may specify a field edit routine that is
used to provide additional editing.

The subroutine is automatically called when new data is entered into the form
in that field.

System edits are performed before the field-edit routine is executed.

Work fields

Several Pointer 8 work fields are used to test and display an error message. These
work areas include:

W8-30-240
Contains the data from the form field after it has been converted to its storage
format.

W8-30-270

Contains the data as it was typed in the form field.

W8-30-300

Data as originally displayed on the form before the change. This field is in
edited format.

W8-07-330

Error Message Number. Place the error message number into this field to

identify which error message to display. The format of this field is
@MMR999. Only reject messages are valid.

W8-01-480
Error Message Flag. Place an at-sign (@) into this work area to signal a field
reject error to the system.

SCREEN-ERROR (W7-01-093)
Form Error Flag. Place an at-sign (@) into this work area to signal a form
reject error to the system.

191

Cyborg Scripting Language Customization - Participant Guide

Creating Batch Report (RGMSTR)
Parameter Entry Forms

FS4 reports

Applicant Tracking Test
Applicant Tracking Test
Applicant Tracking Test

Benefits
Benefits
Benefits
Benefits
Benefits
EBenefits

L i an
hdministration
hdministration
Administration
hdministration
hdministration
Admin Table Rep

EmployeefLabor Relations
HREMS Base Test Reports 1
HREMS Base Test Reports 2
HREMS Base Test Reports 3
HEMS Ease Test Reports 4
HREMS Base Table Reports
Health & Safety Test Reports

Testing Farameter Screens in Build

Reports 1
Reparts 2
Feports 3

b 0
Test Reports
Test Reports
Test Reports
Test Reports
Test Reports
orts 1
Test Reports

NOTES

192

Section 6: Customization Basics Plus

Creating report parameter entry forms (RGMSTR)

Reporting parameter selection
Report run-time parameters are entered using an online parameter entry form. To
access the parameter entry form:

Make the following selections from the Navigator:

Component: 0 Reporting
Process: Report Scheduling
Task: © Schedule Report Groups

Result: The Report Group Activities form displays.

m Select a report group on the Schedule Report Groups form (RGMSTR) and
push the parameters button. The Parameter Selection form (RPARMS) displays
the names of all the reports in the report group with those needing online
parameters having a Set Parameters button to the right of them.

m Select the Set Parameters button to display a Report Parameters entry form
(RPTARG) for that report.

m Enter the parameters for the report. The parameters will be stored in Pointer 6
with all entered dates in century complement format.

Parameter entry form development

The parameter entry form (RPTARG) is a combination of a standard form
program (RPTARG) containing the header report title and report group name
fields and a CALLed parameters entry form program containing the parameter
entry fields for a particular report. There are several standard parameter entry
forms delivered with the system. They are named GRPRSx. Additional
parameter entry forms may be developed for new reports using the naming
convention of R-xxxx where xxxx is the first four positions of the report name
that is, R-X1-R).

The steps in developing an R-xxxx Parameter Entry form are:

m Create parameter entry field definitions pointing to W6-36-036.
m Create an R-xxxx form using Section 1 to contain only the parameter entry
fields defined in Pointer 6.
m Include the Parameter Entry form name on line 00002 in the Batch Report
extract program as: 00002 @PARMS=R-xxxx
& Further information on creating Batch Reports is covered in the Cyborg Scripting
Language Report Customization documentation.

193

Cyborg Scripting Language Customization - Participant Guide

Section Summary

= Form processing

= Form messages

NOTES

194

Section 6: Customization Basics Plus

Section summary

In this section, you learned several techniques to manipulate forms. Specifically,
you learned:

Form Processing

Form Messages

195

Cyborg Scripting Language Customization - Participant Guide

Section 6 Exercise

NOTES

196

Section 6: Customization Basics Plus

Section 6 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

1. Add code to your Office Supply Order form for the program to perform the
following functions:

m Use a field error subroutine to cause a field error reject message to appear
when an Order Number of all zeros or spaces is entered. Use reject
message group ERRSCR, message number Z00. Include explanation and
recommended action documentation.

m Include code in your program to cause a warning message to appear when
more than 100 Post-it Pads are ordered. Use warning message group
ERRSCW, message number Z00. Include explanation and recommended
action documentation.

197

Cyborg Scripting Language Customization - Participant Guide

NOTES

198

Section 7: Online Query Programming

Section 7: Online Query Programming

Table of Contents
OVETVIEW .ttt ettt a et sht e et e e e bt e et e e she e st e e ebbeeabeesbbesabeenbte e bt enabeanbeens 201
QUETY PIOZIAMIMIIIEeeevveeeereeetreeeitreesitreeateeeasseeessseeessseeessseeessseesssseeessseessssessssseesssseesssseessseesns 203
Maintaining alternate KEYS......oouiiiiiiiiiiiieeie ettt ettt e 207
SECHION SUMIMATYeeiiieiiieeiiieiie ettt et et et estteebeesteeebeesateesseessseesseessbeenseessseeseesnseeseesssennseens 221
SECTION 7 EXETCISE ...euveeitieniieeiieetteeitt et et e stte e bt e ettt e bt e sat e e bt e ea bt e bt e sab e e bt e eabeenbtesabeenbbeenbeenseeebeens 223

199

Cyborg Scripting Language Customization - Participant Guide

Objectives

» Identify query verbs
= Create a query program

= Create user-defined alternate keys

NOTES

200

Section 7: Online Query Programming

Overview

Purpose

In this section, you will learn how to create a query program and use query-
related utilities.

Objectives
When you complete this section, you will be able to do the following:

m Identify query verbs
m Create a query program

m Create user-defined alternate keys

201

Cyborg Scripting Language Customization - Participant Guide

QUERY Related Verbs

READ-COMPANY. READ-EMPLOYEE. READ-TAXES. NEXT-LINE.
PRINT literal literal D INQUIRY field-name-1 literal...
field-name-1 ﬁeld—name—Z.._’ field-name-2.
FIND non-key-field-1 FROM HERE
STARTING WITH literal
field-name-1
FROM HERE
literal
PROCESS non-key-field-1 | STARTING WITH field-name-1
ENDING WITH literal
\ field-name-2 7
imperative statement ...
END-PROCESS
NOTES

202

Section 7: Online Query Programming

Query programming
Query programs
QUERY programs allow you to view data online for the selected Master Records.
The QUERY program Command Line lets you enter a range of values, instead of
just one value. For example, all employees between 0001 and 9999, instead of
just one employee number.
Query verbs
QUERY programming uses several of the verbs with which you are already
familiar. These verbs include:

m The READ- verbs must be used to access records. UPDATE is not used in
Query programs.

m The INQUIRY and PRINT verbs are used to build the output line for each
employee record.

m The FIND- and PROCESS/END-PROCESS verbs are used to point to a
particular occurrence of a multiple-occurrence segment.

m The NEXT-LINE verb is used just as it is in online form programming.

203

Cyborg Scripting Language Customization - Participant Guide

QUERY-Only Verbs

Format:

QUERY-ONLY. QUERY-FIRST-PASS.

TIME-TO-PRINT-TITLE. QUERY-HEADERS.

Query example using FIND:

READ-EMPLOYEE.
IF TIME-TO-PRINT-TITLE

PRINT 'QUERY TITLE' NEXT-LINE NEXT-LINE.
QUERY-HEADERS.
FIND AMOUNT-ONE STARTING WITH '500'".
MATCH-SEGMENT-TYPE.
IF FOUND

INQUIRY EMPLOYEE-NUMBER EMPLOYEE-NAME-20
HED-AMOUNT-MTD

HED-AMOUNT-QTD HED-AMOUNT-YTD
NEXT-LINE.

Query example using PROCESS/END-PROCESS:

READ-EMPLOYEE.
IF TIME-TO-PRINT-TITLE
PRINT 'QUERY TITLE' NEXT-LINE NEXT-LINE.

QUERY-HEADERS.
PROCESS AMOUNT-ONE STARTING WITH '500'.

INQUIRY EMPLOYEE-NUMBER EMPLOYEE-NAME-20
HED-AMOUNT-MTD

HED-AMOUNT-QTD HED-AMOUNT-YTD.

NEXT-LINE.

END-PROCESS.

NOTES

204

Section 7: Online Query Programming

Query programming, continued

Query verbs
In addition to the verbs you have learned already, there are several special verbs
used only with Query programs. These verbs include:

QUERY-ONLY

Instructs the system to inhibit execution of the program to only the QUERY
Facility. This statement should be the first command coded in a Query program.

QUERY-FIRST-PASS

Used with a conditional IF statement to determine the timing for initialization or
any preprocessing tasks.

TIME-TO-PRINT-TITLE
Used with a conditional IF statement to determine the timing for printing the
Query Title at the top of each form.

QUERY-HEADERS

Instructs the program to use default heading information for the fields as defined
on the Field Name Table. If used, this verb must be specified before any fields are
displayed on the form.

The headings are not painted until the INQUIRY verb is used.

205

Cyborg Scripting Language Customization - Participant Guide

Maintaining Alternate Keys

QUERY Primary Keys
00 Employee Number
HL History/Labor
MN Documentation
P Program Name
TX Tax Records
77 Audit Record
QUERY Alternate Keys
01 Social Security Number
02 Employee Name
?? Your User-defined Keys
NOTES

206

Section 7: Online Query Programming

Maintaining alternate keys
Query keys
Keys have been defined by Cyborg and are available for your use with query.
Two groups of QUERY keys are:

m Primary
m Alternate

Primary keys

Primary keys are used to direct your query program to the type of record for
processing in standard sequence, for example, employee data versus Audit Record
data. The primary keys are available for immediate use and require no additional
maintenance.

Alternate keys
Alternate key records are stored on the system control repository (FILEO1) to
allow access to your data in a sequence other than the standard record key order.

m When a query is executed using an alternate key, the system must:
o Read the alternate key record from the system control repository (FILEO1).

o Read the employee Record from the Employee Database (FILE02) using the
Control 1-2 and employee number from the alternate key record.

m Alternate keys are not maintained by the system and must be rebuilt
periodically.

m User-defined alternate keys may be created and maintained using Cyborg
Scripting Language.

207

Cyborg Scripting Language Customization - Participant Guide

Modifying the Build Alternate Keys Program
(KEY—-00) for User-Defined Alternate Keys

Unmodified

Modified

00220
00240
00260
00280
00300
00320
00340
00360
00380
00400
00420
00440
00460
90000

00220
00240
00260
00280
00300
00320
00340
00360
00380
00400
00420
00440
00460
00500
00510
00520
00530
00540
00550
00555
00560
90000

@@@@@@@@@@@ USER DEFINED ALTERNATEKEYS @@@Q@Q@Q@QQQAQ@
@@@@@@@ REPLACE XX IN 00440 WITH THE NEW KEY ID @@@@@@@

@@@ REPLACE XXXXXXXXXXXX IN 00460 WITH FIRST KEY FIELD @@@
@@ USE AS MANY 00460 LINES AS NECESSARY TO COMPLETE KEY @@
@ TOTAL KEY MAY NOT EXCEED 19 POSITIONS @

@@ REMOVE THE LEADING @ AND ADD THE FOLLOWING LINES @@
@@@ WITH NEW SEQUENCE NUMBERS OF 00480 THRU 89990. @@@

@@@@@@@ SEE QUERY PROGRAM LINE 06400 @@@Q@QQ@Q@

@@@@@@@@@@@ TO ADD KEY TO LIST ON QUERY SCREEN @@@@@@@@@@@
@ SET PRINT-FIELD TO :1.

(@ MOVE 'Q' TO PRINT-FIELD.

(@ MOVE 'XX' TO PRINT-FIELD. @ KEY ID

@ MOVE XXXXXXXXXXXX TO PRINT-FIELD. @ KEY FIELD
@ PERFORM P900-WRITE

@@@@@@@@@@@ USER DEFINED ALTERNATEKEYS @@@@QQQ@Q@@Q@
@@@@@@@ REPLACE XX IN 00440 WITH THE NEW KEY ID @@@@@@@

@@@ REPLACE XXXXXXXXXXXX IN 00460 WITH FIRST KEY FIELD @@@
@@ USE AS MANY 00460 LINES AS NECESSARY TO COMPLETE KEY @@
@ TOTAL KEY MAY NOT EXCEED 19 POSITIONS @

@@ REMOVE THE LEADING @ AND ADD THE FOLLOWING LINES @@
@@@ WITH NEW SEQUENCE NUMBERS OF 00480 THRU 89990. @@@

@@@@@@@ SEE QUERY PROGRAM LINE 06400 @@@Q@@Q@Q@

@@@@@@@@@@@ TO ADD KEY TO LIST ON QUERY SCREEN @@@@@@@@@@@
@@SET PRINT-FIELD TO :1.

(@ MOVE 'Q' TO PRINT-FIELD.

(@ MOVE 'XX' TO PRINT-FIELD. @ KEY ID

@ MOVE XXXXXXXXXXXX TO PRINT-FIELD. @ KEY FIELD
FIND CITIZENSHIP-CODE.

IF FOUND

SET PRINT-FIELD TO :1
MOVE 'Q' TO PRINT-FIELD
MOVE 'CC' TO PRINT-FIELD @ KEY ID
MOVE CITIZENSHIP-CODE TO PRINT-FIELD @ KEY FIELD
MOVE EMPLOYEE-NUMBER TO PRINT-FIELD
PERFORM P900-WRITE.
(@ PERFORM P900-WRITE.

NOTES

208

Section 7: Online Query Programming

Maintaining alternate keys, continued

Note:

Note:

User-defined alternate keys

You may create user-defined alternate keys by modifying the Build Alternate
Keys program (KEY-00), which is used to build the alternate key index on
FILEO1.

= Any field on the Employee Database may be used as an alternate key value.
m The alternate key index allows for 100 duplicate occurrences of the same
alternate key value.

Modify KEY-00

Add new coding to the Build Alternate Keys program (KEY-00) for each
alternate key you will be defining. The coding instructions are included in KEY-
00 and are as follows:

m Remove the leading @ (at-signs) and add sequence lines 00400 through 90000
with new sequence numbers 00480 through 89990.

m Replace the XX in sequence line 00440 with a two-character identifier for the
alternate key.

m Replace the XXXXXXXXXXXX in sequence line 00460 with the first field to
be used as an alternate key value.

m Repeat sequence line 00460 for each additional field that will be used as a
composite alternate key value. The total alternate key value may not exceed 19
positions.

It may be necessary to position the segment pointer using FIND at the
appropriate segment occurrence for multiple-occurrence segment fields.

These program changes do not take effect until the Build Alternate Keys program
(KEY-00) is RELOADed.

209

Cyborg Scripting Language Customization - Participant Guide

Unmodified

Modified

05400
05500
05600
05700
05800
05900
56000
56100
37100
37200
37300
37400
37500
37600
37700

05400
05500
05600
05700
05800
05900
06000
06100
37100
37200
37300
37400
37500
37600
37700
37710

Modifying Query for
User-Defined Alternate Keys

@ TO RESTRICT QUERY TO ONLY THE CURRENT (TOP LINE)
@ CONTROL 1-2, REMOVE THE AT-SIGNS IN THE NEXT 3 LINES
@ AND RELOAD QUERY.

@ IF W7-06-240 NOT EQUAL TO W6-06-026

@ CALCULATE QUERY-FROM-DUP + :1 = QUERY-FROM-DUP
@ GO TO P150-READ.

P980-MENU.
SPACE-OVER :18. PRINT '00 EMPLOYEE-NUMBER'. NEXT-LINE.
SPACE-OVER :18. PRINT '01 SOCIAL SECURITY NUMBER'.
NEXT-LINE. SPACE-OVER :18. PRINT '02 LAST NAME, FIRST..
NEXT-LINE. SPACE-OVER :18.
PRINT 'SEE DOCUMENTATION FOR OTHERS'. NEXT-LINE.
@@@@ADD USER ALTERNATE KEY DESCRIPTIONS AFTER THIS LINE@@@@

@ TO RESTRICT QUERY TO ONLY THE CURRENT (TOP LINE)
(@ CONTROL 1-2, REMOVE THE AT-SIGNS IN THE NEXT 3 LINES
(@ AND RELOAD QUERY.
IF W7-06-240 NOT EQUAL TO W6-06-026
CALCULATE QUERY-FROM-DUP + :1 = QUERY-FROM-DUP
GO TO P150-READ.

P980-MENU.
SPACE-OVER :18. PRINT '00 EMPLOYEE-NUMBER'. NEXT-LINE.
SPACE-OVER :18. PRINT '01 SOCIAL SECURITY NUMBER'.
NEXT-LINE. SPACE-OVER :18. PRINT '02 LAST NAME, FIRST".
NEXT-LINE. SPACE-OVER :18.
PRINT 'SEE DOCUMENTATION FOR OTHERS'. NEXT-LINE.
@@@@ADD USER ALTERNATE KEY DESCRIPTIONS AFTER THIS LINE@@@@
SPACE-OVER :18. PRINT 'CC CITIZENSHIP CODE'. NEXT-LINE.

NOTES

210

Section 7: Online Query Programming

Maintaining alternate keys, continued

Note:

Modify QUERY

Add new coding to the QUERY program for each alternate key you will be
defining. This additional coding will:

m Display the query alternate key two character identifier and description on the
QUERY form.

m Optionally, limit Control 1-2 access using alternate keys.
To display the Query alternate key identifier and description:

m Edit the code in paragraph P980-MENU to include the two-character Query
alternate key identifier and description.

To restrict Control 1-2 access using query alternate keys to the Control 1-2
currently in the command line:

m Remove the at-signs (@) from the indicated code in paragraph P150-READ.
These program changes will not take effect until QUERY is RELOADed.

211

Cyborg Scripting Language Customization - Participant Guide

The Solution Series Alternate Key Utilities
= Delete alternate keys (KEYDEL)

= Build alternate keys (KEY-00)

NOTES

212

Section 7: Online Query Programming

Maintaining alternate keys, continued

Alternate key utilities

Since alternate keys represent an "as of" situation, new master records do not yet
have alternate key records. For this reason, alternate key records must be
periodically purged and rebuilt. Cyborg suggests that you set up a schedule for
maintaining these records.

If new master records (employees) have been added, but the alternate key records
have not been updated, the only way to view the new records in QUERY is to use
one of the primary keys.

The Solution Series utility programs required to maintain your alternate keys are:
m Delete alternate keys (KEYDEL)
m Build alternate keys (KEY—00)

Maintaining alternate keys in batch

Because you are dealing with a large number of records, it is recommended that
you execute the Build Alternate Keys (KEY-00) and Delete Alternate Keys
(KEYDEL) programs in batch mode.

To execute alternate key maintenance in batch mode, you must use a query
control record in your JCL.

213

Cyborg Scripting Language Customization - Participant Guide

Alternate Key Deletion (KEYDEL)

Control
Record File
FILED4

CBSVB A
(QUERY/KEYDEL)

Y

AuditMessage
File

FILEO3

Inputfﬁles; FILEOl System Control Repository File
FILEO2 Employee Database
FILEO4 Control Record File

Execute: CBSVB
Output files: FILEO3 Audit/Message File
QUERY Control Record:

Social Security Number Delete:

1 1 2 2 3 3 4 4 5 5 6 6
B T (T € T O T € B ¢
P QUERY LINEl 999999QUERY KEYDELO010
P QUERY LINEZ2 9999999999
Employee Name Delete:
1 1 2 2 3 3 4 4 5 5 6 6
.5....0....5....0....5....0....5....0....5....0....5....0....5....0
P QUERY LINE1 999999QUERY KEYDELO2A
P QUERY LINE2 2222222227
NOTES

214

Section 7: Online Query Programming

Maintaining Alternate Keys, continued

KEYDEL

The Delete Alternate Keys program (KEYDEL) deletes alternate key records
from the system control repository by alternate key type and Control 1-2. Once
the records are deleted, new alternate key records can be (re)built.

QUERY Control Record for KEYDEL
The Delete Alternate Keys program is executed utilizing the QUERY facility and
requires a two-line control record:

m Control records for each alternate key type must be added to the KEYDEL job.

m Each QUERY control record must have the appropriate FROM and TO values
to match the alternate key being deleted.

215

Cyborg Scripting Language Customization - Participant Guide

Alternate Key Build (KEY—-00)

— Control
Record File
FILE0D4
CBSVB A
(QUERY/KEYDEL)
ﬂud“ﬂ“ESSEQE

File
FILEO3

Input[ﬁles; FILEOl System Control Repository File
FILEO2 Employee Database
FILEO4 Control Record File
Execute: CBSVB
Output files: FILEO3 Audit/Message File
QUERY Control Record:
Rebuild for Control 1-2 999999:
1 1 2 2 3 3 4 4 5 5 6 6 7 8
SRS TP O IPPI. I 0 I IUPEPEDN O IRPPIES IRDEDRI 0 PPN ISP O DR SN O IAPEPEPIC IR .5....0
P QUERY LINE1 999999QUERY KEY-000000 *
P QUERY LINEZ2 9999999999
Rebuild for Control 1-2 991111:
1 1 2 2 3 3 4 4 5 5 6 6 7 8
N R O I R [P S O Do IS O RV T O o A O o I .5....0
P QUERY LINE1l 991111QUERY KEY-000000 *
P QUERY LINEZ2 9999999999

216

Section 7: Online Query Programming

Maintaining alternate keys, continued

KEY-00
The Build Alternate Keys program (KEY—00) (re)builds alternate key records that
supply data for your Query programs. As delivered, the build alternate keys

program creates alternate key records by Control 1-2 for each Employee
Database record (FILE02) on file.

QUERY control record for KEY-00
The Build Alternate Keys program is executed utilizing the QUERY facility and
requires a two-line control record:

m Control records for each Control 1-2 value must be added to the KEY—00 job.

m The primary KEY of 00 must be used with the appropriate FROM and TO
values to include ALL employees.

217

Cyborg Scripting Language Customization - Participant Guide

Using Alternate Keys with QUERY

K INTRD)

NOTES

218

Section 7: Online Query Programming

Maintaining alternate keys, continued

Using alternate keys

Alternate keys are available to be used with the QUERY program as soon as they
are rebuilt using the Delete Alternate Keys (KEYDEL) and Build Alternate Keys
(KEY-00) programs.

Make the following selections from the Navigator:
Component: @ User Tools

Process: User Tools
Task: & Run a Query

Result: The Query form is displayed.
To execute a QUERY program using an alternate key:

m Identify the alternate key by typing the two-character identifier in the QUERY
KEY field.

m Designate beginning and ending ranges by typing a beginning value in the
QUERY FROM field and an ending value in the QUERY TO field.

219

Cyborg Scripting Language Customization - Participant Guide

Section Summary

= Query-related programs
» QUERY programming

= Maintaining alternate keys

NOTES

220

Section 7: Online Query Programming

Section summary

In this section, you learned several techniques for programming and using Query
programs. Specifically, you learned:

Query-related programs

QUERY programming

Maintaining alternate keys

221

Cyborg Scripting Language Customization - Participant Guide

Section 7 Exercise

NOTES

222

Section 7: Online Query Programming

Section 7 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

1. Using the Office Supply form data, do the following:
m Create a Query program to list the following information:

Title: Office Supply Query

Fields: Employee Name (length of 10 positions)
Order Date
Order Number
Bill to Department (length of 20 positions)
Office Supply Code
Amount Ordered
Price

= Run the Office Supply Query program.

223

Cyborg Scripting Language Customization - Participant Guide

NOTES

224

Appendix A: Exercise Answers

Appendix A: Exercise Answers

Table of Contents
SECHION 2 CXCICISE 1 wuvvvvviiiiiiiieiieieeic et e et e e et e e e e e e eeeabaraeeeseeeeeenasraereeeeeas 226
SECTION 2 CXECICISE 2 wrvvvvviieeieiiiiiieeeeeeeeeeeeeiitereeeeeeeeeseatareeeeeesessassbtreeeeesessesassbarareseeesssanssrrereeesess 229
SECTION 3 EXEICISE ..uvvvvviiiieeieiieiiittteeeeeeeeee ettt eeeeeeeeesssaaataeeteesessasatasseeesesssssssbataseseessssssnssrrsseeeeess 233
SECHION 4 CXCICISEvvveieeeeierieeeeeiteeeeeeeiteeeeeeeaeeeeeeeaeeeeeetaeeeeeeetaseeeeeesseeeeeessseeeeassssseseesseeeeenseeeeans 234
SECHION 5 EXEICISE ...uvvveieeeeieieeeeeteeeeeeeee e e eeeae e e e e e e e e eeteeeeeeeaaeeeeeenaaeeeeeeesaseeeeeaaeeeeeessseeeensareeeeans 237
SECTION 60 CXECICISE ..uvvvvvvrieeeeeiieietireeeeeeeeeeieitrereeeeeeesesesstareeeeeesessessbtrreeeesessesassbaeeresseesssssnnsrrereeesess 245
SECTION 7 EXEICISE ..vvvvvviiiieiieiieietieiteeeeeeeeeeet et e teeeeeesssssaataeeteesessassatassteeesssssasbataeeseeesssassssrraseeeeess 247

225

Cyborg Scripting Language Customization - Participant Guide

Section 2 exercise 1
Purpose
Design a form that will display the following fields and allow them to be updated.

1. Use the title Personal and Identification Information

2] [t [0] B8] [=] (@)] [A] (2]

Personal and Identification Information KEANKAENKANNKRANRRANNARRKRNRN

2, Display the employee name in the form heading.
Form Header - Title

Personal and Identifical

Display Box

EMPLOYEE-NAME

226

Appendix A: Exercise Answers

3.

Section 2 exercise 1, continued

Display the following fields and allow them to be updated.
RECORD-DATE

MARITAL-CODE

Text Box List Box
Field Name: |RECORD-DATE [Spin Button? Field Name: |[HARITAL-CODE
[~ Big Codeset
Label: [Marital Status
Label: [Record Date [When Shown Label Location
Al
3 1 LR Section: |1_ © No Label
ction:
eeton I_L bel Locati W ‘When Shown " Left, Left Justified
abel Location Graphical Mod
¢ No Label ropieeT Mot Exit Routines— | © Always & Left, Right Justified
" Left, Left Justified — Current Value Before: " Character Mode € Above, Left Justified
Exit Routines & Left, Right Justified Don't Show After: " Graphical Mode ¢ Above, Centered on 2 Lines
Before:

€ Above, Left Justified & Show Inside Box

After: " Above, Centered on 2 Lines " Show Below Box K| Delete Cancel |

Delete | Cancel

Field Name: |TOTAL-DEPENDENTS
Label: [Dependents

Sedion:|1_

Exit Routines

Before: l_
After: I_

Label Location——————————————

" No Label

 Left, Left Justified
 Left, Right Justified
" Above, Left Justified

¢ Above, Centered on 2 Lines

¥ Spin Button?
~When Shown
@ Always
€ Character Mode
" Graphical Mode

¢ Don't Show
@ Show Inside Box
" Show Below Box

 Current Value

Field Name: |CITIZENSHIP-CODE
Label: |Citizenship

Section: |1_

Exit Routines

Before: l_
After: l_

[Big Codeset

When Shown
= Always

 Character Mode
" Graphical Mode

Label Location
£ No Label

" Left, Left Justified
& Left, Right Justified
" Above, Left Justified

" Above, Centered on 2 Lines

Delete |

Cancel

Delete

Cancel |

227

Cyborg Scripting Language Customization - Participant Guide

Section 2 exercise 1, continued

PRIOR-NAME ID-VERIFIED

PRIDR-NAME

Identification Group Box

ID-PROVIDED

B Interior:

L ransparent

S
[
—

228

Appendix A: Exercise Answers

Section 2 exercise 2
Purpose
This exercise gives you practice using the information you have learned in the
section. Modify the form you created in Section 2, Exercise 1 to include the
following:

1. Add a tab group to the form (Graphical Mode only)

2] [l [=» | [EB] (] [@®)] 7] [A] [20)

Personal and Identification Information hhthhhbhhhttnrtrtttrtthrtthntd

Box Intenior

L ransparent

LB urple

229

Cyborg Scripting Language Customization - Participant Guide

Section 2 exercise 2, continued
2, Create a Select/Inquiry section of the form using Form Section 8.

Form Builder - X1-SCR._SAT

2] [l [=0 | [E6] (=] [®)] 7] (A [2)

230

Appendix A: Exercise Answers

Section 2 exercise 2, continued
Section 2 exercise 2 fields

RECORD-DATE

RECORD-DATE I

Record Date

Display Box

HARITAL-STATUS
Marital Status

231

Cyborg Scripting Language Customization - Participant Guide

Section 2 exercise 2, continued
Section 2 exercise 2 fields

TOTAL-DEPENDENTS

TOTAL-DEPENDENTS u
Total Dependents

Display Box

CITIZEN-COUNTRY
Citizenship

232

Appendix A: Exercise Answers

Section 3 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

Create a form program that displays the form you designed using Form
Builder.

P100-START-SCREEN.
KEY-REQUIRED.
UPDATE-EMPLOYEE .
NEW-SCREEN-STYLE.
SCREEN-SECTION ‘0’.
IF INQUIRY-MODE OR SELECTION-MODE
GO TO P990-INQUIRY-SCREEN.
P200-ENTRY-SCREEN.
SCREEN-SECTION ‘1’.
P300-VERIFY.
SET-FOR-MESSAGES.
IF ERRORS-EXIST RETURN.
IF RECORD-NOT-UPDATED
RETURN.
CALL ‘XXXXXX’. @ EDIT ROUTINES
RETURN.
P990-INQUIRY-SCREEN.
SCREEN-SECTION ‘8’.
RETURN.

Create context-sensitive menu records for your form. Include the following
forms:

m 03-SCR Telephone Information
m 24-SCR Automobile Information
m 16-SCR Emergency Contact/Physician

COMMAND: | |
SCreen/Sg ScrMam Grinky Menu Screen Title

| ®1-5CR_01) 03-5CR| | | ¥] Telephone Information

| ®1-5CR 02| 24-5CR| | | ¥] Automobile Information

| ®1-5CR_03] 1&-5CR| | | ¥] Emergency Contact/Fhysician

| YEOSCR_01) YE1SCR| | | v] T4 Specifications

| YEQSCR 02| YE25CR| | | v} T4 EI Ratings

| TEOSCR 03| YE45CR| | | Y] T4 CPF_and EI Rates

| YEOSCR_04] YEESCR| | | 7] T4 _Accounting contact

| YEOSCR_O5| YEESCR| | | ¥] T4 _Transmitter Summar

| YEOSCR 0&| YEFSCR| | | v) T4 Transmitter Name

| YEOSCR_O7| YESSCR| | | Y] T4 Transmitter Address

| YEOSCR 08| vE3SCR| | | v] T4 Transmitter Location

| YTEOSCR_ 05| YEOSCR| G| | Y] T4 Transmitter Contact

| YE1OCR 01] YELOCR| G| | v] T4A Specifications

_| YE10CR 02| YE12CR[| | v] T4A Business Number Box &1

| YE1OCR 03] YE13CR| | | Y] T4A Media Eusiness Mumber

| YELOCR 04] YEL4CR| | | ¥] T4A ACCOUNting contact

| YTELOCR 0S| YELECR| | | Y] T#A Transmitter Summar

| YELOCR 08| YELGCR| | | ¥] T4A Transmitter Name

| YELOCR 07| YEL1FCR| | | v] T4A Transmitter Address

Generate the form program using the Update Form Appearance Table
program (PUTSAT).

Run and test the form program.

233

Cyborg Scripting Language Customization - Participant Guide

Section 4 exercise

Purpose
This exercise gives you practice using the information you have learned in the
section.

Use any of the online