
bbc

Adobe® LiveCycle™ Forms
July 2006  Version 7.2

Overview



© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle™ Forms 7.2 Overview for Microsoft® Windows®, UNIX®, and Linux®
Edition 3.0, July 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished 
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part 
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, 
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected 
under copyright law even if it is not distributed with software that includes an end user license agreement. 

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in the informational content contained in this guide. 

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The 
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to 
obtain any permission required from the copyright owner.

Any references to company names and company logos in sample material or in the sample forms included in this software are for 
demonstration purposes only and are not intended to refer to any actual organization. 

Adobe, the Adobe logo, Acrobat, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United 
States and/or other countries. 

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

This product includes code licensed from RSA Security, Inc. 

Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, 
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. 
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, 
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users 
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein. 
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if 
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.



     3

Contents

Preface .......................................................................................................................................... 4

1 About LiveCycle Forms................................................................................................................ 5
Working environments ................................................................................................................................................................ 5

Development environment ................................................................................................................................................. 6
Run-time environment........................................................................................................................................................... 6
End-user environment ........................................................................................................................................................... 7

How LiveCycle Forms processes a request ........................................................................................................................... 7

2 LiveCycle Forms Integration....................................................................................................... 9
Integrating with other Adobe products................................................................................................................................. 9

Process management............................................................................................................................................................. 9
LiveCycle Designer ............................................................................................................................................................ 9
LiveCycle Reader Extensions .......................................................................................................................................10
LiveCycle Form Manager ..............................................................................................................................................11
LiveCycle Workflow.........................................................................................................................................................11

Document security and control........................................................................................................................................12
LiveCycle Document Security .....................................................................................................................................12
LiveCycle Policy Server ..................................................................................................................................................13
Integrating with LiveCycle Forms..............................................................................................................................13

Glossary ...................................................................................................................................... 15



     4

Preface

This guide provides an overview of Adobe® LiveCycle™ Forms, part of the Adobe LiveCycle suite of 
products.

What’s in this guide?

This guide contains specific information about LiveCycle Forms:

● Capabilities and features

● Working environments

● Integration with other Adobe products

Who should read this guide?

This guide is intended for system administrators and developers. However, the information is useful to 
anyone who needs an introduction to LiveCycle Forms and how it integrates with other Adobe products.

Related documentation

In addition to this overview, the following resources provide information about LiveCycle Forms:

For information about See

Understanding how to use the LiveCycle Forms APIs 
to create custom applications

Developing Custom Applications

Installing, configuring, and administering in a 
development and run-time environment

Installing and Configuring LiveCycle for JBoss
Installing and Configuring LiveCycle for WebSphere
Installing and Configuring LiveCycle for WebLogic

The Form Server Module API, including a description 
and explanation of its classes and methods

 Form Server Module API Reference

The XML Form Module API, including a description 
and explanation of its classes and methods

 XML Form Module API Reference

The new features in this product release What’s New

The form objects and associated properties that are 
supported in each web browser.

Transformation Reference

Patch updates, technical notes, and additional 
information on this product version.

www.adobe.com/support/products/
enterprise/index.html

http://www.adobe.com/support/products/enterprise/index.html


     5

1 About LiveCycle Forms

LiveCycle Forms enables organizations to extend their intelligent data capture processes by deploying 
electronic forms in PDF or HTML format over the Internet. With LiveCycle Forms, end users can easily 
access online forms without downloading any additional software, fill them online, or save them to fill 
offline.

Form data can be submitted to an organization’s core systems via LiveCycle Forms, thereby increasing the 
quality of data gathered, improving customer service, and leveraging investment in core systems. By 
enabling end users to access and submit forms online, LiveCycle Forms enables businesses and 
government to reach all customers and citizens using their web browsers (on any platform or any device) 
without requiring them to download any proprietary software or plug-ins.

LiveCycle Forms offers many key features:

● Enables interactive access to documents using a web browser

● Automatically detects the browser type and platform, and then dynamically generates a HTML 
document that is based on a form design (typically created in Adobe LiveCycle Designer)

● For dynamic subforms created in Adobe LiveCycle Designer, adds extra fields and boilerplate as a result 
of merging the form design with data or as a result of scripting

● Detects whether form design scripts should run on the client or on the server

● Validates data entry by performing calculations, accessing databases, or enforcing business rules on 
field-level data, and then returns the resulting data to the browser

● Extracts submitted form data as XML

● Imports, exports, and links third-party XML schemas and data

Working environments
LiveCycle Forms consists of three working environments:

● Form-based applications are developed in the development environment.

● Requests are initiated in the end-user environment. 

● The applications are processed in the run-time environment. 



Adobe LiveCycle Forms About LiveCycle Forms
Overview  Development environment     6

The following diagram illustrates these working environments:

Development environment

The development environment includes tools that enable developers and form authors to work together 
to create form-based applications tailored to any business requirements. LiveCycle Forms consists of 
modules, APIs, and configuration tools. 

The modules are installed and configured in the development environment and deployed to the run-time 
environment. You deploy the modules to a Java 2 Enterprise Edition (J2EE) application server where they 
run as J2EE services.

The APIs included in the LiveCycle Forms installation help you to write the code that invokes particular 
services that are deployed to the application server. 

Adobe Configuration Manager is installed along with LiveCycle Forms. You use Configuration Manager to 
configure and package most LiveCycle Forms modules into a single EAR file that you can deploy to a J2EE 
application server. For more information about using Configuration Manager, see the Installing and 
Configuring guide for your application server. 

Run-time environment

The LiveCycle Forms run-time environment consists of modules that are deployed and executed on a J2EE 
application server. Depending on the steps required to process a request, LiveCycle Forms uses different 
modules. The services provide the functionality for client-side and server-side execution of documents 
that are rendered as PDF or HTML. Using configuration tools, administrators and developers can configure 
and administer the modules.

Adobe Administrator enables an administrator to configure optional run-time settings associated with 
LiveCycle Forms. For example, using Administrator, you can define the web context of a LiveCycle Forms 
custom application. For more information about Administrator, see the Installing and Configuring guide for 
your application server. 



Adobe LiveCycle Forms About LiveCycle Forms
Overview  End-user environment     7

Adobe User Management allows administrators to maintain a database for all users and groups, 
synchronized with one or more third-party user directories. User Management provides authorization and 
user management for LiveCycle products, including Adobe LiveCycle Workflow, LiveCycle Forms, and 
Adobe LiveCycle Form Manager. 

Note: Administrators access User Management from within Administrator.

End-user environment

The LiveCycle Forms end user environment consists of a web browser (for HTML forms) together with 
Adobe Reader® (for PDF forms). LiveCycle Forms can detect the browser type and dynamically generate a 
PDF or HTML document of the form design created in LiveCycle Designer.

How LiveCycle Forms processes a request
When end users request a document from LiveCycle Forms (for example, by clicking a button or an image 
on a web page), the request initiates a series of specific processes and interactions among the web 
application, LiveCycle Forms, and the web browser. After receiving the form, end users can interact with it 
online. After end users are finished with the form, they submit it, along with form data, back to LiveCycle 
Forms.

The following diagram provides an example of how LiveCycle Forms processes a request from an end user:

Form
Design

XML
Data

LiveCycle Forms 
Form

Design

XML
 Data

HTTP Request



Adobe LiveCycle Forms About LiveCycle Forms
Overview  How LiveCycle Forms processes a request     8

These are the steps to initiate and process the request:

1. The end user accesses a web page and requests a form. 

2. The web application invokes LiveCycle Forms and requests the form. 

3. LiveCycle Forms retrieves the form design from a repository and data (possibly from an enterprise 
database), then merges the form design with the data to prepopulate parts of the form. The data can 
come from a variety of sources, such as an enterprise database, another form, or another application.

4. LiveCycle Forms determines the format in which to render the prepopulated form based on the 
browser information that is passed with the call. The format of a form can also be set programmatically 
by using the Form Server Module API. For information, see Developing Custom Applications.

5. LiveCycle Forms transforms the form design into PDF or HTML and then returns the prepopulated form 
to the end user.

6. The end user completes the form and then submits the form data back to LiveCycle Forms. Before form 
data is submitted back to LiveCycle Forms, applicable client-side scripts are executed. For example, a 
user may be prompted to provide a value for a mandatory form field.

7. The form data is submitted to LiveCycle Forms.

8. LiveCycle Forms extracts the submitted data, runs any server-side scripts associated with the button 
that was clicked, then executes the calculations and validations on the form. For information about 
calculating form data, see Developing Custom Applications.

9. LiveCycle Forms returns results. If validations fail, the result may be a form that is returned to the end 
user. However, if validations are successful, then the result may be XML data. 



     9

2 LiveCycle Forms Integration

LiveCycle Forms is part of the Adobe LiveCycle suite of products that can help your organization to 
efficiently and effectively deliver intelligent documents to end users and retrieve information from end 
users. Adobe LiveCycle products enable your organization to create and integrate intelligent documents 
(including the data) into your enterprise applications and business processes.

Intelligent documents are either non-interactive (end users cannot edit the document) or interactive (end 
users can interact with the document), depending on the intentions of the author. Adobe Reader or a web 
browser provide access to intelligent documents within and outside your organization. 

Here are examples of intelligent documents:

● Expense report forms that automatically calculate sums

● Dynamic forms that contain information personalized for the end user

● Contractual documents that can track comments and approvals from suppliers and customers while 
protecting the original source document from unauthorized changes

Integrating with other Adobe products
LiveCycle Forms, combined with other LiveCycle products, enables your organization to integrate 
enterprise applications with document processes throughout the organization, improving document 
generation and process management. LiveCycle Forms can also integrate with other products, such as 
Adobe LiveCycle Document Security, to improve security within your organization.

Process management

The four LiveCycle products that are included with process management and integrate with LiveCycle 
Forms are LiveCycle Designer, Adobe LiveCycle Reader Extensions, LiveCycle Form Manager, and LiveCycle 
Workflow. This section describes how these products integrate with LiveCycle Forms. 

LiveCycle Designer

LiveCycle Designer is a graphical form design tool that simplifies the design and layout of forms for use 
with LiveCycle Forms and other Adobe products. It has an easy-to-use interface that enables form authors 
to quickly create and maintain form designs. The form author defines a form’s business logic and can 
preview the form before it is deployed. 

The form author can deploy the form designs for use with LiveCycle Forms either as XDP files or PDF files, 
depending on the requirements of the business process. LiveCycle Forms can render an XDP file either as 
an HTML form or PDF form. A PDF file is rendered as a PDF form.



Adobe LiveCycle Forms LiveCycle Forms Integration
Overview  Process management     10

The following diagram shows deploying form designs for use with LiveCycle Forms:

LiveCycle Reader Extensions

LiveCycle Reader Extensions enables organizations to extend the functionality of Adobe Reader by adding 
usage rights to PDF documents. Usage rights are permissions that enable the recipients of PDF documents 
within or outside organizations to access features in PDF documents that are not usually available in 
Adobe Reader. 

With LiveCycle Reader Extensions, administrators can access a wizard-like web application to add usage 
rights to PDF documents. LiveCycle Reader Extensions also provides a set of Java APIs to programmatically 
add usage rights to PDF documents either in batches or in real-time.

By integrating a LiveCycle Forms custom application with LiveCycle Reader Extensions, end users can fill 
PDF forms offline, digitally sign PDF documents, save the data locally, and comment on PDF documents 
using Adobe Reader. 

XML Form Data

J2EE Application ServerDevelopment environment End User



Adobe LiveCycle Forms LiveCycle Forms Integration
Overview  Process management     11

The following diagram shows LiveCycle Forms integrating with LiveCycle Reader Extensions:

LiveCycle Form Manager

LiveCycle Form Manager provides a central repository where administrators can organize and store form 
designs as well as control form design versions. Form authors can deploy their form designs (including 
images) to the LiveCycle Form Manager repository from LiveCycle Designer. Once deployed to the 
repository, the form designs are ready for use with LiveCycle Forms.

LiveCycle Form Manager enables end users to find, organize, and process the forms that they need from 
their web browser. Using LiveCycle Form Manager, end users can perform these tasks:

● Open and fill forms.

● Find forms quickly and easily.

● Reuse forms they have previously filled. 

● Customize the presentation of forms. 

LiveCycle Workflow

Adobe LiveCycle Workflow enables an organization to automate business processes to improve 
organizational productivity. LiveCycle Workflow automatically routes forms to users, stores XML-based 
process information in a database, and integrates with legacy systems such as email servers, database 
servers, and LDAP servers, as well as with other LiveCycle products. LiveCycle Workflow provides tools for 
designing, deploying, and administering electronic processes, and provides business application 
monitoring (BAM) tools for monitoring process metrics using real-time information.

LiveCycle Workflow uses Quick Process Action Components (QPACs) to invoke LiveCycle Forms. QPACS are 
components that define a step of a business process. Using LiveCycle Workflow QPACS for LiveCycle 
Forms, you invoke the following functionality:

● Render a form to a client device, such as a web browser.

● Process a form that is submitted from a client device, such as a web browser. 

J2EE Application Server End User



Adobe LiveCycle Forms LiveCycle Forms Integration
Overview  Document security and control     12

The following diagram shows LiveCycle Workflow and LiveCycle Form Manager integrating with LiveCycle 
Forms:

Document security and control

The two LiveCycle products that are included with document security and control and integrate with 
LiveCycle Forms are LiveCycle Document Security and Adobe LiveCycle Policy Server. This section 
describes how these products integrate with LiveCycle Forms.

LiveCycle Document Security

LiveCycle Document Security ensures document authenticity, integrity, and confidentiality by providing 
all the digital signature and encryption capabilities of Adobe Acrobat® Professional or Acrobat Standard in 
a server environment. LiveCycle Document Security can also attach a policy that is created by LiveCycle 
Policy Server to a PDF document.

PDF documents can be signed and certified on the server. The technology used to digitally sign 
documents ensures that both the signer and recipients can be clear about what was signed, and that the 
document was not altered since it was signed. 

PDF documents can be encrypted on the server for specific recipients and can also be decrypted on the 
server. When a document is encrypted, its contents become unreadable. Only an authorized user can 
decrypt the document to obtain access to the contents.

LiveCycle Document Security can also verify certified and encrypted PDF documents that originate from 
end users. The server-based certificate validation ensures that the certificate of the author is valid and that 
the document was not modified during transmission.

Processes a form

End User



Adobe LiveCycle Forms LiveCycle Forms Integration
Overview  Document security and control     13

LiveCycle Policy Server

LiveCycle Policy Server is a web-based security system that enables users to dynamically apply 
confidentiality settings to their PDF documents, and maintain control over the documents, no matter how 
widely they are distributed. 

LiveCycle Policy Server prevents information from spreading beyond the users’ reach by enabling them to 
maintain control over how recipients use the policy protected PDF document. Users can specify who can 
open a document and how they can use it, and monitor the document after they distribute it. They can 
also dynamically control access to a policy protected document, and even revoke access to the document 
if necessary. 

Because PDF documents can contain many forms of information, such as text, audio, or video files, 
LiveCycle Policy Server enables users to safely distribute and maintain control of any information that is 
saved in the PDF document. 

Using client applications (Acrobat), users are able to protect PDF documents by applying security policies 
(a collection of pre-defined user access and confidentiality settings). They can also use Acrobat or Adobe 
Reader to access policy-protected documents. Client applications also communicate with the server 
component to authenticate end users, provide event information to the server for auditing purposes, and 
determine if access to documents is authorized. 

Integrating with LiveCycle Forms

The following diagram shows LiveCycle Forms integrating with LiveCycle Document Security and 
LiveCycle Policy Server:

J2EE Application Server End UserEnterprise back end



Adobe LiveCycle Forms LiveCycle Forms Integration
Overview  Document security and control     14

In this scenario, LiveCycle Forms merges XML data with a form design (that was created by using LiveCycle 
Designer) and transfers the PDF form data to LiveCycle Document Security. LiveCycle Document Security 
saves the PDF form data as a PDF document and then applies a policy and digitally signs it. LiveCycle 
Reader Extensions then adds user rights to the PDF document. The secured PDF document is sent to users 
who can interact with it using Acrobat. For information about transferring PDF form data, see Developing 
Custom Applications.



     15

Glossary

This glossary contains terminology definitions that are 
specific to documentation for the Adobe LiveCycle suite 
of products. These terms may have different meanings in 
other contexts, but they have restricted meanings in this 
documentation. 

A

accessible forms

Forms that users with disabilities or vision impairment can 
view and fill using screen readers and other assistive 
technologies. See also tagged Adobe PDF form.

Acrobat form

A PDF document, created in Acrobat, that contains one or 
more form fields. The PDF document may also contain 
non–form content. 

action

In a workflow, the representation of a step in a business 
process.

Adobe certified document

A document that is signed with a specific Adobe root 
certificate. An Adobe certified document provides a 
strong guarantee as to the authenticity and immutability 
of the document. See also certificate.

Adobe document services

Adobe document services extend the value of core 
enterprise systems to ensure more secure, reliable, and 
efficient use of business-critical information across the 
extended enterprise. Adobe document services include 
the Adobe LiveCycle suite of products and the Acrobat 
product line. 

application

A set of generally interdependent files that make up a 
self-contained application that Adobe LiveCycle products 
can run. Applications may include files such as form 
designs, Java Server Pages, HTML pages, servlets, and 
images.

B

branch

A branch contains a set of actions interconnected by 
routes, representing a sequential path taken by a process 
at execution. The branch always determines the behavior 
of the workflow.

C

certificate

An electronic file that establishes your identity, by binding 
your identity to your public key, when doing business or 
other transactions on the web. A certificate (or sometimes 
called a digital certificate) is issued by a certificate 
authority (CA). See also Adobe certified document.

client

The requesting program in a client/server relationship. A 
web browser is an example of a client application.

credential

The file that contains a private key. (The corresponding 
public key is contained in a certificate.) A private key is 
what one principal presents to another used to establish 
identity in decryption and signing operations. Credentials 
are issued by an authentication agent or a certification 
authority. See also certificate.

D

deadline

The time by which a person must complete a work item. 
Deadlines are properties of workflows.

dynamic form

A form that can expand or contract to reflect the amount 
of incoming data. See also interactive form.



Adobe LiveCycle Forms Glossary
Overview      16

E

ebXML 

Electronic Business using eXtensible Markup Language 
(ebXML). A modular suite of specifications that enables 
enterprises of any size and in any geographical location to 
conduct business over the Internet. See also registry.

encryption 

The conversion of data into a format (called a ciphertext) 
that cannot be easily understood by unauthorized 
persons. The conversion is done using an encryption 
algorithm.

F

form

An electronic document that captures and delivers data. A 
person may add data to an interactive form, or a server 
process may merge a form design with data to produce a 
form. 

form authors

LiveCycle Designer users who are capable of creating 
fillable forms to be used in Acrobat or Adobe Reader, and 
simple non-interactive forms for deployment to LiveCycle 
Forms. See also form developers.

FormCalc

A calculation language similar to that used in common 
spreadsheet software that facilitates form design without 
requiring a knowledge of traditional scripting techniques 
or languages.

form design

The design-time version of a form that an author or 
developer creates in LiveCycle Designer.

form developers

LiveCycle Designer users who are capable of creating 
complex form-based applications for use in different 
environments. See also form author.

form object

A form element, such as a button or text field, that you 
can place on a form. An object has its own set of 
properties and events.

I

interactive form

A form that a person can interact with and complete 
electronically. 

N

non-interactive form

A form that a person can view or print but cannot fill 
electronically. Non-interactive forms can be merged or 
prepopulated with data, but the data cannot be changed 
by a user. Non-interactive forms are designed for output.

P

PDF document 

Portable Document Format. A file conforming to the PDF 
specification as published by Adobe Systems or a file 
conforming to the XDP specification, containing exactly 
one PDF packet and no more than one each 
XFA-Template, XFA-Configuration, XFA-SourceSet, and 
Annotations packets. 

PDF form

A form that users can access in Acrobat and Adobe 
Reader. PDF forms are either interactive or 
non-interactive. 

permissions

Security settings applied, for example, to restrict users 
from opening, editing, printing, or removing encryption 
from a PDF file. Permissions cannot be changed unless the 
user has the Permissions password. Permissions can be set 
in LiveCycle Designer, Acrobat, LiveCycle Document 
Security, and other products.



Adobe LiveCycle Forms Glossary
Overview      17

policy 

Defines a set of security permissions and users who can 
access a PDF document to which the policy is applied. 
Policies are created using LiveCycle Policy Server and can 
be applied to documents using LiveCycle Policy Server, 
LiveCycle Document Security, or Acrobat 7.0 or later.

prepopulated form

A form that appears to the user with some or all fields 
automatically populated with data.

Q

QPAC

Quick Process Action Component. A JAR file that contains 
server-side code and client-side code for use with 
LiveCycle Workflow. In LiveCycle Workflow Designer, 
QPACs provide action components that can be added to 
workflows to represent a step in a process. LiveCycle 
Workflow Server interprets each action of the workflow 
and executes the server-side code of the corresponding 
QPACs. QPACs enable LiveCycle Workflow to interact with 
other Adobe LiveCycle products, such as LiveCycle Forms 
and LiveCycle Barcoded Forms.

R

reminder

A notification sent to people that reminds them to 
complete a work item. Reminders are properties of 
workflows.

render

An action whereby LiveCycle Forms merges a form design, 
possibly with data, to display a form in PDF or HTML 
format in a browser. 

registry

An ebXML-compliant repository of shared information 
that provides services for the purpose of enabling 
business process integration between interested parties. 
See also ebXML and repository.

repository

The underlying storage area within a registry. See also 
registry.

restricted document

A PDF document with password security restrictions 
(permissions) that prevent the document from being 
opened, printed, or edited. 

rights-enabled document

A PDF document that includes security extensions that 
enable Adobe Reader users to fill forms, add comments, 
and sign documents.

route

The path between actions on a workflow. Routes 
determine the order in which LiveCycle Workflow Server 
executes actions at run time.

run time

For form rendering, the time when an application or 
server process retrieves a form design, possibly merges it 
with data, and presents it to a user for viewing or filling.

S

split

A segment in a workflow that contains one or more 
branches. The branches in a split are executed in parallel.

static form

A form that remains exactly as it was designed. The layout 
does not change according to the amount of incoming 
data.

subform

An object that can act as a container for form objects and 
other subforms. A subform helps to position form objects 
relative to each other and provide structure in dynamic 
form designs. A subform can also provide a reference 
point, when binding data to a form, by restricting the 
scope for a field so that it matches that of the 
corresponding data node.



Adobe LiveCycle Forms Glossary
Overview      18

T

tagged Adobe PDF form

Includes a logical structure and a set of defined 
relationships and dependencies among the various 
elements, plus additional information that permits reflow. 
See also accessible forms.

turnkey

An installation option that automatically installs and 
configures the LiveCycle product files, JBoss application 
server, and MySQL database, and deploys the product 
files to JBoss. After you perform a turnkey installation, the 
LiveCycle product is ready to use.

U

usage rights

Rights that extend the functionality of Adobe Reader and 
enable users to save forms with data, add comments, and 
sign documents.

W

workflow

The electronic representation of a business process. 
Workflows are created using LiveCycle Workflow Designer. 

X

XDP file

XML Data Package. LiveCycle Designer saves form designs 
as either XDP files or PDF files. LiveCycle Forms uses XDP 
files to render forms in PDF or HTML format.

XML Forms Architecture

Represents the underlying technology beneath the 
Adobe XML forms solution. It enables the construction of 
robust and flexible form-based applications for use on 
either the client or the server. 

XML form

A PDF form that conforms to the Adobe PDF specification 
and the Adobe XML Forms Architecture. XML forms are 
typically created in LiveCycle Designer. XML forms can 
have the file name extension .xdp or .pdf.



bbc

Adobe® LiveCycle™ Forms
July 2006 Version 7.2

XML Form Module API Reference

Note:
The Form Server Module API is not described 
in this guide. You can locate reference 
information that describes the Form Server 
Module API by opening the index.html page 
in the documentation/javadocs directory.



© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle™ Forms 7.2 XML Form Module API Reference for Microsoft® Windows®, UNIX®, and Linux®
Edition 3.0, July 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished 
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part 
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, 
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected 
under copyright law even if it is not distributed with software that includes an end user license agreement. 

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in the informational content contained in this guide. 

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The 
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to 
obtain any permission required from the copyright owner.

Any references to company names and company logos in sample material or in the sample forms included in this software are for 
demonstration purposes only and are not intended to refer to any actual organization. 

Adobe, the Adobe logo, Acrobat, LiveCycle, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the 
United States and/or other countries. 

IBM is a trademark of International Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds. 

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group. 

All other trademarks are the property of their respective owners.

This product includes code licensed from RSA Security, Inc. 

Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, 
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. 
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, 
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users 
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein. 
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if 
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.



     3

Contents

Preface .......................................................................................................................................... 5
What’s in this guide? ..................................................................................................................................................................... 5
Who should read this guide? ..................................................................................................................................................... 5
Related documentation ............................................................................................................................................................... 5

1 XML Form Module API ................................................................................................................. 7
FormFactory interface .................................................................................................................................................................. 7

create............................................................................................................................................................................................ 7
createDefault ............................................................................................................................................................................. 8

Form interface ................................................................................................................................................................................. 9
clearMessages ........................................................................................................................................................................... 9
getMessages ............................................................................................................................................................................. 9
exportXDP................................................................................................................................................................................... 9
exportXML ................................................................................................................................................................................11
getConfigValue .......................................................................................................................................................................12
getPacketList ...........................................................................................................................................................................13
getPageCount .........................................................................................................................................................................13
importPackets .........................................................................................................................................................................14
isPacketPresent.......................................................................................................................................................................14
render ........................................................................................................................................................................................15
setConfigValue........................................................................................................................................................................16

ReturnStatus...................................................................................................................................................................................17
XDP packets....................................................................................................................................................................................17
Configuration options ................................................................................................................................................................18

Defaults......................................................................................................................................................................................18
Scripting interface .................................................................................................................................................................19
Configuration options reference......................................................................................................................................19
Configuration options syntax............................................................................................................................................20

data.outputXSL.uri ..........................................................................................................................................................20
data.range ..........................................................................................................................................................................21
data.record.........................................................................................................................................................................21
data.startNode ..................................................................................................................................................................22
data.xsl.debug.uri ............................................................................................................................................................22
data.xsl.uri ..........................................................................................................................................................................23
destination .........................................................................................................................................................................23
locale ....................................................................................................................................................................................23
pdf.compression.compressLogicalStructure.........................................................................................................23
pdf.compression.level....................................................................................................................................................23
pdf.compression.type ....................................................................................................................................................24
pdf.encryption.encrypt..................................................................................................................................................24
pdf.encryption.encryptionLevel.................................................................................................................................24
pdf.encryption.masterPassword ................................................................................................................................24
pdf.encryption.permissions.accessibleContent ...................................................................................................24
pdf.encryption.permissions.contentCopy..............................................................................................................25
pdf.encryption.permissions.documentAssembly................................................................................................25
pdf.encryption.permissions.formFieldFilling ........................................................................................................25



Adobe LiveCycle Forms Contents
XML Form Module API Reference       4

1 XML Form Module API (Continued)
Configuration options (Continued)

Configuration options syntax (Continued)
pdf.encryption.permissions.modifyAnnots ...........................................................................................................25
pdf.encryption.permissions.plaintextMetadata...................................................................................................26
pdf.encryption.permissions.print ..............................................................................................................................26
pdf.encryption.permissions.printHighQuality ......................................................................................................26
pdf.encryption.permissions.change .........................................................................................................................26
pdf.encryption.userPassword .....................................................................................................................................27
pdf.fontInfo.embed.........................................................................................................................................................27
pdf.fontInfo.encodingSupport ...................................................................................................................................27
pdf.fontInfo.map.equate...............................................................................................................................................27
pdf.fontInfo.subsetBelow .............................................................................................................................................28
pdf.interactive...................................................................................................................................................................28
pdf.openAction.destination.........................................................................................................................................28
pdf.submitFormat............................................................................................................................................................29
pdf.tagged..........................................................................................................................................................................29
pdf.xdc.uri...........................................................................................................................................................................29
temp.uri...............................................................................................................................................................................29
template.base ...................................................................................................................................................................29

2 Data Manager Module API ........................................................................................................ 30
DataManager interface...............................................................................................................................................................30

createFileDataBuffer .............................................................................................................................................................30
createFileDataBufferFromUrl.............................................................................................................................................31
getTempFileName.................................................................................................................................................................31
manageTempFile ...................................................................................................................................................................32

DataBuffer interface ....................................................................................................................................................................32
getBufLength...........................................................................................................................................................................32
getBytes.....................................................................................................................................................................................32
getContentType .....................................................................................................................................................................33
setContentType ......................................................................................................................................................................33

FileDataBuffer interface .............................................................................................................................................................34
getFilePath ...............................................................................................................................................................................34

DMUtils class ..................................................................................................................................................................................34
getDataBuffer ..........................................................................................................................................................................34
getDataHandler ......................................................................................................................................................................35
getInputStream ......................................................................................................................................................................35

3 Connection API .......................................................................................................................... 36
ConnectionFactory interface....................................................................................................................................................36

getConnection ........................................................................................................................................................................36

Index ........................................................................................................................................... 38



     5

Preface

This guide is one of several resources available to help you learn about Adobe® LiveCycle™ Forms.

What’s in this guide?
This guide provides a reference of the XML Form Module API and Data Manager Module API. Both of these 
APIs belong to LiveCycle Forms.The following table provides a brief description of when you would use 
these APIs in your custom applications.

Note: The Form Server Module API is not described in this guide. You can locate reference information 
that describes this API by viewing Form Server Module API Reference. To view Form Server Module API 
Reference, open the index.html page in the documentation/javadocs directory.

Who should read this guide?
This guide is for developers who want to develop applications that interact with the XML Form Module 
and is a companion guide to Developing Custom Applications. 

Related documentation
The resources in this table can help you learn about LiveCycle Forms.

Product module When to use the API

XML Form Module Use this API to create non-interactive applications that render PDF forms. 

Data Manager Module Use this API (with the Connection API) to invoke the XML Form Module.

For information about See

Understanding what LiveCycle Forms is and how it 
integrates with other Adobe products

Overview 

Understanding how to use the LiveCycle Forms APIs 
to create custom applications

Developing Custom Applications

Installing, configuring, and administering LiveCycle 
Forms in a development and run-time environment

Installing and Configuring LiveCycle for JBoss

Installing and Configuring LiveCycle for WebSphere

Installing and Configuring LiveCycle for WebLogic

The Form Server Module API, including a 
description and explanation of its classes and 
methods

Form Server Module API Reference (in the 
documentation/javadocs directory)



Adobe LiveCycle Forms Preface      Related documentation
XML Form Module API Reference       6

New features in this product release What’s New

Form objects and associated properties that are 
supported in each web browser.

Transformation Reference

Other services and products that integrate with 
LiveCycle Forms

www.adobe.com 

Patch updates, technical notes, and additional 
information on this product version

www.adobe.com/support/products/enterprise/
index.html

For information about See

http://www.adobe.com
http://www.adobe.com/support/products/enterprise/index.html


     7

1 XML Form Module API

The XML Form Module API lets you create custom applications that can process and work with 
non-interactive forms containing large data sets. Using the XML Form Module API, you can create 
applications that perform non-interactive, form-rendering operations such as these:

● Load XML data into an XML Data Package (XDP) file. 

● Load XML data into an Adobe PDF file that contains XDP information.

● Control configuration and data-loading options.

● Render PDF documents.

● Extract XML data from an XDP file.

Caution: The XML Form Module API is deprecated. As a result, it is recommended that you use the Form 
Server Module API. The Form Server Module API is not described in this guide. You can locate 
reference information that describes the Form Server Module API by opening the index.html 
page in the documentation/javadocs directory.

The XML Form Module API consists of two interfaces: FormFactory and Form. The FormFactory 
interface has two methods: create and createDefault. Using either of these methods, you create a 
Form object. For information about creating a FormFactory object or a Form object, see the “Invoking 
LiveCycle Forms” chapter in Developing Custom Applications.

A Form object enables you to perform specific tasks, such as exporting data into a form (either an XDP file 
or a PDF file). When working with a Form object, you also work with objects that belong to the Data 
Manager API. For example, you call the exportXDP method to export data into a form. The exportXDP 
method returns a FileDataBuffer object that contains the data to export. The FileDataBuffer 
object belongs to the Data Manager API. For information, see “Data Manager Module API” on page 30.

Knowledge of some Adobe XML Forms Specifications is a prerequisite to working with the XML Form 
Module API. For example, some XML Form Module API methods accept XDP packet names as parameters. 
XDP (one of the XML Forms Specifications) is an XML format that provides a mechanism for packaging 
units of content (known as XDP packets) within a surrounding XML container. These packets enable the 
XML Form Module API to determine how to process the input file. For a summary of each packet, see “XDP 
packets” on page 17.

FormFactory interface
The FormFactory interface lets you create Form objects. 

create
Creates a Form object and imports the packets listed by packetNames from the data specified by the 
inputData parameter.

Syntax
public Form create(FileDataBuffer inputData, PacketList packetNames)

throws InvalidXDPException, InvalidPacketNameException



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  createDefault     8

Parameters

Returns

A Form object.

Details

The typical usage of this method is to pass the configuration file as a FileDataBuffer object in the first 
argument and config as the packet list. For information, see the “Rendering Non-Interactive Forms” 
chapter in Developing Custom Applications.

Throws

InvalidXDPException if input data is not well-formed XML or if PDF does not contain XDP data.

InvalidPacketNameException if an invalid packet name is specified.

createDefault
Creates a Form object that uses default configuration values. For information about these configuration 
values, see “Configuration options” on page 18. 

Syntax
public Form createDefault()

Returns

A Form object.

Note: For information about using this method to create a Form object, see the “Invoking LiveCycle 
Forms” chapter in Developing Custom Applications.

inputData Input data to load. These data formats are acceptable:

● PDF with XDP information

● XDP

● XML

packetNames List of packets to load. These packet names are valid:

● template

● datasets

● stylesheets

● xfdf (annotations)

● sourceSet

● pdf

● config

To include all packets, specify an asterisk (*).

For a description of each packet, see “XDP packets” on page 17.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Form interface     9

Form interface
You use the Form interface to manipulate configuration values, render forms, and import or export data as 
an XDP or XML file.

clearMessages
Clears the messages that have accumulated since the Form object was created or the last time this 
method was called.

Syntax
void clearMessages()

getMessages 
Returns the messages that have accumulated since the Form object was created or the last time this 
method was called.

Syntax
public FileDataBuffer getMessages()

Returns

A FileDataBuffer object that contains XML Forms Architecture messages. 

exportXDP
Exports the packets specified by the packetNames parameter to a FileDataBuffer object in XDP 
format.

Syntax
public FileDataBuffer exportXDP(PacketList packetNames)

throws PacketNotFoundException, InvalidPacketNameException, 
ExportException



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  exportXDP     10

Parameters

Returns

A FileDataBuffer object containing the exported data.

Throws

PacketNotFoundException if the specified packet is not found.

InvalidPacketNameException if an invalid packet name is specified.

ExportException if an error occurs during the export process.

Example

The following example exports all packets except datasets to an XDP file:

try { 
String exportPackets[] = new String[packetList.length];
int nCountPL = 0; 
int nCountEP = 0; 
while (nCountPL < packetList.length)
{ 

if (packetList[nCountPL] != "datasets")
{ 

exportPackets[nCountEP] = packetList[nCountPL]; 
nCountEP++; 

} 
nCountPL++; 

} 

FileDataBuffer exportXDP = Form.exportXDP(exportPackets); 

// Get the path for the created file 
String xdpFile = exportXDP.getFilePath(); 
System.out.println("XDP data successfully exported to " + xdpFile); 
} 

packetNames List of packets to export. These packet names are valid: 

● template 

● datasets 

● stylesheets 

● xfdf (annotations) 

● sourceSet 

● pdf 

● config 

To include all packets, specify an asterisk (*).

For a description of each packet, see “XDP packets” on page 17.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  exportXML     11

catch (PacketNotFoundException e) {
System.out.println("PacketNotFoundException: " + e.packetName); } 

catch (InvalidPacketNameException e) {
System.out.println("InvalidPacketNameException: " + e.packetName); }

catch (ExportException e) { 
System.out.println("ExportException: " + e.reason);}

exportXML
Exports the packets specified by the packetName parameter to a FileDataBuffer object in XML 
format.

Syntax
public FileDataBuffer exportXML(PacketList packetName)

throws PacketNotFoundException, InvalidPacketNameException, 
ExportException

Parameters

Returns

A FileDataBuffer that contains the exported data.

Throws

PacketNotFoundException if the specified packet is not found.

InvalidPacketNameException if an invalid packet name is specified.

ExportException if an error occurs during the export process.

packetNames List of packets to export. These packet names are valid: 

● template 

● datasets 

● stylesheets 

● xfdf (annotations) 

● sourceSet 

● pdf 

● config 

For a description of each packet, see “XDP packets” on page 17.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  getConfigValue     12

Example

The following example exports all packets except datasets to an XDP file:

try { 
String exportPackets[] = new String[packetList.length];
int nCountPL = 0; 
int nCountEP = 0; 
while (nCountPL < packetList.length) 
{ 

if (packetList[nCountPL] != "datasets") 
{ 

exportPackets[nCountEP] = packetList[nCountPL]; 
nCountEP++; 

} 
nCountPL++; 

} 

FileDataBuffer exportXDP = Form.exportXML(exportPackets); 

// Get the path for the created file 
String xdpFile = exportXDP.getFilePath(); 
System.out.println("XDP data successfully exported to " + xdpFile); 
} 

catch (PacketNotFoundException e) {
System.out.println("PacketNotFoundException: " + e.packetName); } 

catch (InvalidPacketNameException e) {
System.out.println("InvalidPacketNameException: " + e.packetName); }

catch (ExportException e) { 
System.out.println("ExportException: " + e.reason);}

getConfigValue
Retrieves a value from a node in the Configuration Data Object Model (DOM). The node from which a value 
is retrieved is specified as an XML Scripting Object Model (SOM) expression. For information, see 
“Configuration options” on page 18. 

Syntax
public String getConfigValue(SOMExpression path)

throws InvalidSOMExpressionException

Parameters

Returns

The value of the specific node. 

path A SOM expression that specifies a node in the Configuration DOM from which a value is 
retrieved.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  getPacketList     13

Throws

InvalidSOMExpressionException if the path value is invalid.

getPacketList
Returns a list of all XDP packets that are currently imported. For a description of each packet, see “XDP 
packets” on page 17.

Syntax
public PacketList getPacketList()

Returns

Returns a list of all loaded packets.

Example

The following example shows this method populating a string array, named packetList, with packet 
values:

// Get the packet list 
String packetList[] = Form.getPacketList(); 
String packets = "The packets are ";

int nCount = 0;
while (nCount < packetList.length) 
{ 
packets = packets + packetList[nCount]; 
nCount++;
if (nCount != packetList.length) 
  packets = packets + ", "; 
} 

System.out.println(packets);

getPageCount
Returns the number of pages that the latest render method produced.

Syntax
public long getPageCount()

Returns

The number of pages in the rendered document.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  importPackets     14

importPackets
Imports the XDP packets specified by packetNames from the data specified by the inputData 
parameter.

Syntax
void ImportPackets(FileDataBuffer inputData, PacketList packetNames)

throws InvalidXDPException, InvalidPacketNameException

Parameters

Throws

InvalidXDPException if the input data is not structured XML or if PDF does not contain XDP data.

InvalidPacketNameException if an invalid packet name is specified.

isPacketPresent
Determines whether a specific packet was imported.

Syntax
public boolean isPacketPresent(String packetName)

inputData Input data to load. Data can be imported from one of the following sources:

● PDF files with XDP information 

● XDP files

● XML files 

packetNames List of packets to load. These packet names are valid: 

● template 

● datasets 

● stylesheets 

● xfdf (annotations)

● sourceSet 

● pdf 

● config 

For a description of each packet, see “XDP packets” on page 17.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  render     15

Parameters

Returns

True if packet is loaded; otherwise, False.

Example

The following example determines whether a packet named datasets exists:

// Determine whether a datasets packet exists
 boolean datasetsPresent = Form.isPacketPresent("datasets");
 if (datasetsPresent) 

System.out.println("datasets packet is present"); 
else 

System.out.println ("datasets packet is not present");

render 
Merges the imported form design with imported data and renders the resulting document. The 
destination configuration option specifies the rendered output format. You can set this value using the 
setConfigValue method. For information, see “Configuration options” on page 18.

Syntax
public FileDataBuffer render(ReturnStatus renderStatus)

throws NoTemplateException, InvalidTemplateException,
InvalidXDCException, RenderException

Parameters

Returns

A FileDataBuffer object that contains the rendered output.

packetName Name of packet. These packet names are valid: 

● template 

● datasets 

● stylesheets 

● xfdf (annotations)

● sourceSet 

● pdf 

● config 

For a description of each packet, see “XDP packets” on page 17.

renderStatus The status of the render operation. For information, see “ReturnStatus” on 
page 17.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  setConfigValue     16

Throws

NoTemplateException if no form design is imported.

InvalidTemplateException if the form design is invalid.

InvalidXDCException if no XML file is specified or the specified XDC file cannot be found. This file is 
named acrobat7.xdc and contains information such as the available fonts, and must be referenced to 
successfully render a PDF document. This file is placed on the Java 2 Enterprise Edition (J2EE) application 
server on which LiveCycle Forms is deployed. The file location is dependent on which J2EE application 
server and operating system you are using. For example, this file is placed in the following location when 
LiveCycle Forms is deployed on IBM® WebSphere running on Microsoft® Windows®.

C:\Program Files\WebSphere\AppServer\installedApps\adobe\server1\XMLFormService\bin

RenderException if an error occurs during the rendering process. 

Note: For a complete discussion about rendering a form using the XML Form Module API, see the 
“Rendering Non-Interactive Forms” chapter in Developing Custom Applications.

setConfigValue
Assigns a configuration value to the Configuration DOM. The node for which the configuration value is set 
is specified by a SOM expression. For information, see “Configuration options” on page 18.

Syntax
public void setConfigValue(SOMExpression path, String value)

throws InvalidSOMExpressionException, InvalidConfigurationException

Parameters

Throws

InvalidSOMExpressionException if the node that is specified by the SOM expression does not exist.

InvalidConfigurationException if an invalid value is specified.

path The SOM expression that specifies a node for which a configuration value is set.

value The configuration value to assign to the node.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  ReturnStatus     17

ReturnStatus
ReturnStatus is an enumeration specifying whether the render method was successful. 

Note: For information about the render method, see “render” on page 15.

XDP packets
Using Adobe LiveCycle Designer, a form author can save a form design as an XDP file or a PDF file. XDP is 
an XML format that provides a mechanism for packaging units of content (known as XDP packets) within a 
surrounding XML container. 

When the form author saves the form design, the resulting XDP or PDF file typically contains XDP packets 
that define the form design and related configuration information. The presence of XDP information in a 
PDF file enables users of Adobe Reader® 6.0.2 or later to fill in forms created in LiveCycle Designer. XDP files 
can also contain data packets; for example, when a user fills in a form and submits the data to LiveCycle 
Forms. 

Several XML Form Module API methods accept XDP packet names as parameter values. The following 
table provides a summary of each XDP packet.

XFA_RENDER_SUCCESS Successful.

XFA_RENDER_FAILURE Unsuccessful.

XFA_RENDER_SUCCESS_WITH_INFO Successful, with additional messages that can be viewed in 
the server log file.

XFA_RENDER_SUCCESS_WITH_WARNINGS Successful but produced warnings, which can be viewed in 
the server log file. 

Packet name Description

template Encloses the XML form design created in LiveCycle Designer.

datasets Encloses XML form data that originates from an XML form and/or may be intended 
for merging with an XML form.

stylesheets Encloses a single Extensible StyleSheet Language Transformations (XSLT). The XDP 
file may enclose more than one stylesheets packet. 

xfdf Encloses collaboration annotations in a PDF document.

pdf Encloses an encoded PDF form without the XML form data in a datasets packet.

config Encloses configuration information that the XML Form Module uses to determine 
how to process the input file.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options     18

Example

The following XDP example contains two packets: datasets and pdf. The first packet is the 
<xfa:datasets> element, which encloses the XML form data subassembly of a PDF form. The second 
packet is the <pdf> element, which encloses an encoded PDF form without the XML form data contained 
in the first datasets packet:

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">

<xfa:data>
<book>

<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author><firstname>Charles</firstname>

<lastname>Porter</lastname>
</author>

</book>
</xfa:data>

</xfa:datasets>
<pdf xmlns="http://ns.adobe.com/xdp/pdf/">

<document>
<chunk>
JVBERi0xLjMKJeTjz9IKNSAwIG9iago8PC9MZW5...
ZQo+PgpzdHJlYW0KeJylWEtv3DYQvutX8FKgPZj...
Z/iUBGstoTDg9cfVfPPgcPjJDxUnDH7wt3GCtPv...
</chunk>

</document>
</pdf>

</xdp:xdp>

Configuration options
The XML Forms Architecture leverages XML for the representation of all information and incorporates XML 
architectural concepts such as DOMs. One such DOM is the Configuration DOM.

The Configuration DOM provides a mechanism for specifying configuration options for the XML Form 
Module. The XML Form Module provides a default configuration file (default.xci). This file is placed on the 
J2EE application server on which LiveCycle Forms is deployed. The file location is dependent on which 
J2EE application server and operating system you are using. For example, this file is placed in the following 
location when LiveCycle Forms is deployed on WebSphere running on Windows:

C:\Program Files\WebSphere\AppServer\installedApps\adobe\server1\XMLFormService

Defaults
Conceptually, the Configuration DOM exists before loading the XML Form Module default configuration 
file. The Configuration DOM initializes all option values to their default values at startup. Required options 
are initialized to their default values. Options that do not require keyword values are initially empty.

When the XML Form Module loads the Configuration DOM from a configuration file, if a particular element 
is not present in the configuration file, the associated option retains its pre-existing value. 

The default behavior is described within the individual section for each option in the “Configuration 
options syntax” on page 20.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Scripting interface     19

Scripting interface
The Configuration DOM also supports a scripting interface that enables user-supplied scripts to examine 
and modify the configuration settings. The XML Form Module API uses the XML Forms Architecture SOM 
to reference nodes within the Configuration DOM. 

A SOM expression consists of a sequence of node names separated by periods (“.” characters). Starting 
from some point in the Configuration DOM tree, each successive name identifies which child of the current 
node to descend to, such as the following example:

pdf.xdc.uri

This particular SOM expression references the uri element that is a descendant of the pdf element in the 
Configuration DOM.

Configuration options reference
The following table provides a cross-reference of elements in the Configuration DOM, their corresponding 
SOM expression, and a link to information on usage:

Configuration option (SOM expression) Configuration DOM element See

data.outputXSL.uri uri (child of outputXSL element) page 20

data.range range page 21

data.record record page 21

data.startNode startNode page 22

data.xsl.debug.uri uri (child of debug element; 
descendant of data element)

page 22

data.xsl.uri uri (child of xsl element; 
descendant of data element)

page 23

destination destination page 23

locale locale page 23

pdf.compression.compressLogicalStructure compressLogicalStructure page 23

pdf.compression.level level page 23

pdf.compression.type type page 24

pdf.encryption.encrypt encrypt page 24 

pdf.encryption.encryptionLevel encryptionLevel page 24 

pdf.encryption.masterPassword masterPassword page 24 

pdf.encryption.permissions.
accessibleContent

accessibleContent page 24 

pdf.encryption.permissions.contentCopy contentCopy page 25 



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     20

Configuration options syntax
This section provides a reference of each configuration option that you can specify as a SOM expression 
using the getConfigValue and setConfigValue methods of the XML Form Module API.

data.outputXSL.uri

Specifies the fully qualified path or URL of an XSLT script. When specified, this option invokes an XSLT 
interpreter to process the supplied data before loading it into the XML DOM. For example: 

data.outputXSL.uri=http://www.mysite.com/xsl/data/loan.xsl

pdf.encryption.permissions.
documentAssembly

documentAssembly page 25 

pdf.encryption.permissions.
formFieldFilling

formFieldFilling page 25 

pdf.encryption.permissions.modifyAnnots modifyAnnots page 25 

pdf.encryption.permissions.
plaintextMetadata

plaintextMetadata page 26 

pdf.encryption.permissions.print print page 26 

pdf.encryption.permissions.
printHighQuality

printHighQuality page 26 

pdf.encryption.permissions.change change page 26 

pdf.encryption.userPassword userPassword page 27 

pdf.fontInfo.embed embed page 27 

pdf.fontInfo.encodingSupport encodingSupport page 27 

pdf.fontInfo.map.equate equate page 27 

pdf.fontInfo.subsetBelow subsetBelow page 28 

pdf.interactive interactive page 28 

pdf.openAction.destination destination page 28 

pdf.submitFormat submitFormat page 29

pdf.tagged tagged page 29 

pdf.xdc.uri uri (descendant of pdf element) page 29 

temp.uri uri (descendant of temp element) page 29

template.base base page 29

Configuration option (SOM expression) Configuration DOM element See



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     21

data.range

Controls which records are processed; that is, loads only those records indicated into the XML DOM.

The range option specifies the records that are to be processed.

The value of range is a comma-separated list of one or more record numbers and/or record number 
ranges. A record number is a non-negative decimal integer, where 0 (zero) indicates the first record. A 
record number range is a record number followed by a dash (-) character, followed by another record 
number that is numerically equal to or greater than the other record number. Record number ranges and 
record numbers can overlap, as in the following example: 

data.range=3-5,9,4,5-6

This causes records 3, 4, 5, 6, and 9 to be processed and all other records to be ignored.

For more information on records, see “data.record” on page 21.

data.record

Controls the division of the document into records. Records are processed sequentially as separate 
documents. The value of record is either an integer or a tag name. 

If the value of record is an integer, it specifies the level in the tree at which the XML Form Module treats 
each node as the root of a record. 0 represents the root of the whole XML Data DOM. For example, if the 
value is 2, each element that is two levels in from the outermost element is considered as enclosing a 
record. 

If the value of record is not an integer, it is interpreted as a tag name. The first element in the XML data 
file with a tag matching the value of record determines the level of a record within the tree. The XML 
Form Module processes nodes as records in the XML DOM that correspond to the same level and have a 
name matching the value of record as root nodes. 

By default, the XML Form Module considers the document range to enclose one record of data 
represented by the first (top-level) data group within the document range.

For example, the following XML data file contains a single record, which is the element <order>, and 
represents the top-level data group within the document range: 

<order>
<number>1</number> 
<shipto>

<customer>c001</customer>
</shipto>
<item>

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<quantity>1</quantity>
<unitprice>55.00</unitprice>

</book>
</item>
<item>

 <book>
<ISBN>15536456</ISBN>
<title>Advanced XML</title>



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     22

<quantity>1</quantity>
<unitprice>75.00</unitprice>

</book>
</item>

</order>

To nominate the item elements as records, specify data.record=item. The XML Form Module 
processes each record in the XML data file as a separate document.

To nominate only the second item element as a record, specify data.record=2. The XML Form Module 
processes only the second item element in the XML data file.

data.startNode

Identifies the root of the subtree that is processed. The XML Form Module does not process any data 
outside the subtree. The expression in the startNode element is restricted to a fully qualified path of 
element types (tag names), starting with the root of the XML data document and referring to a single 
element. This option affects processing during every phase.

For example, consider this XML data file:

<order>
<number>1</number>
<shipto>

<customer>c001</customer>
</shipto>
<item>

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<quantity>1</quantity>
<unitprice>55.00</unitprice>

</book>
</item>
<item>

<book>
<ISBN>15536456</ISBN>
<title>Advanced XML</title>
<quantity>1</quantity>
<unitprice>75.00</unitprice>

</book>
</item>

</order>

To process only the first item, specify data.startNode="xfasom(order.item)". To process only the 
second item, specify data.startNode="xfasom(order.item[2].book)".

data.xsl.debug.uri

Specifies the fully qualified path or URL where the XML Form Module saves a copy of the preprocessed 
XML data after the XSLT interpreter has created it. It is intended for debugging the XSLT script. This option 
takes effect during the data loading phase, as shown in the following example: 

data.xsl.debug.uri=http://www.mysite.com/xsl/debug/loan.xdp



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     23

data.xsl.uri

Specifies the fully qualified path or URL of an XSLT script. When specified, this option invokes an XSLT 
interpreter to process the supplied XML data before loading it into the XML DOM. This option takes effect 
during the data loading phase, as shown in the following example:

data.xsl.uri=http://www.mysite.com/xsl/loan.xsl

destination

Specifies the output format when rendering documents. The only acceptable value is pdf.

locale

Specifies the locale to use when rendering documents. For a list of supported locales, see the Developer’s 
Guide.

pdf.compression.compressLogicalStructure

Used to generate PDF documents with the logical structure compressed. Normally, the structure is not 
compressed and therefore increases the size of the document. This feature was introduced in Adobe 
Acrobat® 6.0 Professional and Acrobat 6.0 Standard. The default value is off (0) for the XML Form Module, 
but it is defaulted to on (1) when a form author saves a PDF from LiveCycle Designer. If you use this option 
to compress the logical structure, that logical structure cannot be used by Acrobat 5.0 or earlier versions. 
The PDF will still open in Acrobat 5.0; however, to users, it will look as if the document has no logical 
structure (used for accessibility and tabbing order).

These values are acceptable: 

0 - Do not compress the logical structure.

1 - Compress the logical structure.

pdf.compression.level

When destination is pdf, specifies the degree of compression to use when generating a file. These 
values are acceptable:

0 - Disable compression. 

positive integer - Enable compression. The positive integer is a value between 1 and 9. The 
value 1 represents the best speed, and the value 9 represents the best compression. The default 
compression level is 6.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     24

pdf.compression.type

When destination is pdf, specifies the type of compression to apply to a file. These values are 
acceptable:

none - Does not compress the output. This value is the default.

ccittfax3 - CCITT T.4 bi-level encoding. Only works for monochrome TIF images.

ccittfax4 - CCITT T.6 bi-level encoding. Offers better compression than ccittfax3 and is only for 
monochrome TIF images.

ccittr1e - A run length compression that is used only for monochrome TIF image files. 

packbit - A run length compression scheme that works for monochrome or color image files.

pdf.encryption.encrypt

Determines whether the output document is encrypted. These values are acceptable:

0 - Do not encrypt. This value is the default.

1 - Encrypt.

pdf.encryption.encryptionLevel

Specifies the length of the encryption key to use. The default and only acceptable value is 40bit.

pdf.encryption.masterPassword

Specifies the password (as a string) required to open an encrypted PDF document that has unlimited 
access rights. 

pdf.encryption.permissions.accessibleContent

Controls the ability of accessibility aids to copy text or graphics from the document. Accessibility aids such 
as screen readers need to copy text from the document into their own buffers. This options sets a 
permission flag that controls the ability of programs to extract text or graphics from the document. When 
extracted, the data may be used for any purpose.

This permission flag applies only when an encrypted PDF document is opened using the user password. 
No restrictions apply if the document is not encrypted or if it is opened using the master password.

These values are acceptable:

0 - Disable copying to accessibility aids. This value is the default.

1 - Enable copying to accessibility aids.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     25

pdf.encryption.permissions.contentCopy

Enables or disables the user’s ability to copy text or graphics from the document.

This option applies only when an encrypted PDF document is opened using the user password. No 
restrictions apply if the document is not encrypted or if it is opened using the master password.

These values are acceptable:

0 - Disable copying. This value is the default.

1 - Enable copying.

pdf.encryption.permissions.documentAssembly

Controls the user’s ability to reassemble the PDF document. This option controls whether the user has the 
right to insert, delete, or rotate pages, and create navigation elements such as bookmarks and thumbnail 
images. If permission is granted, the user has these rights, even if the document is encrypted or if it is 
opened using the master password.

These values are acceptable:

0 - Disable insertion, deletion, or rotation of pages, and creation of navigation elements.

1 - Enable insertion, deletion, or rotation of pages, and creation of navigation elements.

pdf.encryption.permissions.formFieldFilling

Controls the user’s ability to enter data into existing form fields. This option sets a permission flag that 
controls the user’s ability to fill in form fields, including signature fields. If permission is granted, the user 
can fill in fields regardless of the content of the pdf.encryption.permissions.modifyAnnots 
option.

This permission flag applies only when an encrypted PDF document is opened using the user password. 
No restrictions apply if the document is not encrypted or if it is opened using the master password.

These values are acceptable:

0 - Disable filling in form fields. This value is the default.

1 - Enable filling in form fields.

pdf.encryption.permissions.modifyAnnots

Controls the user’s ability to modify the annotation layer of the document. This option sets a permission 
flag that grants the user the ability to add or modify text annotations and, if the change option grants 
permission, to create or modify interactive form fields (including signature fields). This option can also 
grant the user the ability to fill in existing fields of a form, but that permission can also be granted 
independently by the pdf.encryption.permissions.formFieldFilling option.

These values are acceptable:

0 - Disable modification of the annotation layer. This value is the default.

1 - Enable modification of the annotation layer.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     26

pdf.encryption.permissions.plaintextMetadata

Decrypts the metadata in the output PDF document. Document metadata is represented by an XML 
stream contained within the output PDF document. However, if the document is encrypted, the metadata 
is also encrypted by default. This option decrypts the metadata stream even if the rest of the document is 
encrypted.

These values are acceptable:

0 - Encrypt the metadata if the rest of the document is encrypted. This value is the default.

1 - Do not encrypt the metadata even if the rest of the document is encrypted.

pdf.encryption.permissions.print

Controls the user’s ability to print the PDF document. The printed copy may be degraded in appearance 
compared to the original, depending on the content of the 
pdf.encryption.permissions.printHighQuality option.

This permission flag applies only when an encrypted PDF document is opened using the user password. 
No restrictions apply if the document is not encrypted or if it is opened using the master password.

These values are acceptable:

0 - Disable printing. This value is the default.

1 - Enable printing.

pdf.encryption.permissions.printHighQuality

Controls the user’s ability to print the PDF document with high fidelity and as much detail as the original 
document.

This permission flag applies only when an encrypted PDF document is opened using the user password. 
No restrictions apply if the document is not encrypted or if it is opened using the master password.

These values are acceptable:

0 - Disable high-fidelity printing. This value is the default.

1 - Enable high-fidelity printing.

pdf.encryption.permissions.change

Controls the user’s ability to make changes to the PDF document. This option controls the permission flag 
that grants the user permission to modify the contents of the document by any means not controlled by 
the pdf.encryption.permissions.modifyAnnots option, the 
pdf.encryption.permissions.formFieldFilling option, or the 
pdf.encryption.permissions.documentAssembly option. For example, this option controls the 
user’s ability to edit the boilerplate.

These values are acceptable:

0 - Disable changes. This value is the default.

1 - Enable changes.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     27

pdf.encryption.userPassword

Specifies the password (as a string) required to open an encrypted PDF document that has user access 
rights. 

pdf.fontInfo.embed

Controls the embedding of fonts in the output document. If the fonts are not embedded, the client 
computer or printer may not be able to reproduce the text properly. Particular fonts may have license 
restrictions that prohibit embedding. 

These values are acceptable:

0 - Do not embed the fonts in the output document. This value is the default.

1 - Embed whatever fonts can be embedded in the output document.

pdf.fontInfo.encodingSupport

Specifies a list of non-Unicode character encodings. Defining the list in advance may improve 
performance. When not specified, encoding tables are initialized when first encountering a non-Unicode 
encoding.

The value must be a whitespace separated list of encoding names. The names, which are shown in the 
following list, are case-sensitive:

● Big-Five - Traditional Chinese

● GB2312 - Simplified Chinese

● ISO-8859-1 - European Latin 1

● ISO-8859-2 - European Latin 2

● ISO-8859-7 - Greek

● KSC-5601 - Korean

● Shift-JIS - Japanese

pdf.fontInfo.map.equate

Supplies mappings from one specified typeface to another during the rendering of a document. Use this 
option to deal with typefaces specified in the XDC file that are not available on the printer or display 
device, as in the following example:

<equate from="Arial_normal_normal", to="Arial_bold_italic">

The example changes the font for text that is specified as plain Arial to bold, italic Arial in the generated 
output.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     28

pdf.fontInfo.subsetBelow

Specifies a usage threshold below which an embedded font is reduced to the subset of symbols that are 
actually used.

A font is sometimes used only for a few characters in a document. It is not necessary to embed the entire 
font if only a portion of it is used. This option sets a usage threshold below which only the used subset is 
embedded. Above the threshold, the entire font is embedded, if possible.

This option does not apply to fonts that are not embedded. Embedded fonts are controlled by the 
pdf.fontInfo.embed option.

This option has no effect for fonts that are used in data entry fields. If the font is embedded, it is embedded 
in its entirety.

The value is a positive integer from 0 to 100, inclusive. The default value for this option is 100, which 
subsets all embedded fonts that are not used in data entry fields.

pdf.interactive

Specifies whether a PDF form should be generated as a flat form for printing or as an interactive form for 
online use.

One way to use a PDF document is to print it. Another way is to use client software with a user interface 
that enables interaction with the document. The content of this option indicates which way the output 
document is used.

These values are acceptable:

0 - The form is printed for filling in off-line. Interactive user interface objects such as fields and radio 
buttons are rendered as boilerplate, and the annotation layer is empty. This value is the default.

1 - The form is filled in online using a suitable client program. Interactive user interface objects are 
placed into the annotation layer.

pdf.openAction.destination

Specifies the action to be performed when opening the document in an interactive client.

These values are acceptable:

none - No special action is performed. The document is displayed using default behavior. This value is 
the default.

pageFit - The document is resized to fit the window.



Adobe LiveCycle Forms XML Form Module API
XML Form Module API Reference  Configuration options syntax     29

pdf.submitFormat

Specifies the format in which the form data is sent to the server. This option applies only to interactive PDF 
documents. The content of the submitFormat element determines the settings for bits 3 (ExportFormat, 
9 (SubmitPDF), and 6 (XFDF) in the submit-form action as described in the PDF 1.5 specification.

These values are acceptable:

html - The data is submitted in HTML.

delegate - The format is determined by the server and client at run time.

fdf - The data is submitted in XFDF. 

xml - The data is submitted in XML. 

pdf - The data is submitted in PDF. 

pdf.tagged

Controls whether tags are included in the output PDF document. Tags, in the context of PDF, are additional 
information included in a document to expose the logical structure of the document. Tags assist 
accessibility aids and reformatting. For example, a page number may be tagged as an “artifact” so that a 
screen reader does not enunciate it in the middle of the text. Although tags make a document more 
useful, they also increase the size of the document and the processing time to create it.

These values are acceptable:

0 - Do not insert tags. This value is the default.

1 - Insert tags.

pdf.xdc.uri

Specifies the path of the XDC file, acrobat7.xdc, which is placed on the J2EE application server on which 
LiveCycle Forms is deployed. The file location is dependent on which J2EE application server and 
operating system you are using. The XDC file contains information such as the available fonts. The XML 
Form Module uses the device control information to render PDF documents, as in the following example:

form.setConfigValue("pdf.xdc.uri", "C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\\XMLFormService
\\bin\\acrobat7.xdc")

temp.uri

Specifies the location of temporary files. When specified, overrides the system default location for 
temporary files.

template.base

Specifies the base location for URIs in the form design. When this option is not specified, the location of 
the form design is used as the base.

The value is a URI that specifies the fully qualified path pointing to the location of any files to include. This 
option can be set by a separate document (or even a script) external to the form design. 



     30

2 Data Manager Module API

The Data Manager Module API enables you to efficiently exchange DataBuffer tokens that represent the 
underlying data and is a mechanism to abstract the actual storage of data from the usage of the data. This 
API also contains a set of interfaces that represent the underlying data. 

The XML Form Module can create, exchange, and manipulate references to DataManager objects. For 
example, you must create a DataManager object when you create or work with a Form object (this object 
belongs to the XML Form Module API). For information about creating a Form object, see the “Invoking 
LiveCycle Forms” chapter in Developing Custom Applications.

DataManager interface
The DataManager interface connects the Data Manager service to a transaction model on the J2EE 
application server hosting LiveCycle Forms. The DataManager service provides a factory for creating 
DataBuffer (and FileDataBuffer) objects. One DataManager servant is allocated (on request) per 
transaction.

Requests by a module for a DataManager resource results in the module getting the DataManager 
servant created in response to the first request. On instantiation, the DataManager servant creates a 
temporary directory that is specific to the current transaction. When the servant terminates, it deletes the 
temporary directory and all of its contents.

createFileDataBuffer
Creates a FileDataBuffer object and wraps it around the file specified as the parameter. If the file is 
outside the transaction-specific temporary directory, it is not automatically deleted unless the 
DataManager object is specifically requested to manage the file as part of the transaction by using the 
manageTempFile method. For information, see “manageTempFile” on page 32.

Syntax
public FileDataBuffer createFileDataBuffer(String filePath) 

throws InvalidSourceException

Parameters

Returns

A FileDataBuffer object wrapped around the file specified as the filePath parameter.

Throws

InvalidSourceException if an invalid file is specified.

filePath The fully qualified path to the file that wraps the FileDataBuffer object.



Adobe LiveCycle Forms Data Manager Module API
XML Form Module API Reference  createFileDataBufferFromUrl     31

createFileDataBufferFromUrl
Creates a FileDataBuffer object from a URL that is passed as a string parameter. The DataManager 
object first creates a temporary file, copies the contents of the URL over to the file (including the content 
type), and creates a regular FileDataBuffer object wrapping the temporary file.

Syntax
public FileDataBuffer createFileDataBufferFromUrl(String url)

throws InvalidSourceException

Parameters

Returns

A FileDataBuffer object created from a URL.

Throws

InvalidSourceException if an invalid URL is specified.

getTempFileName
Generates a temporary file name in the transaction-specific temporary directory and returns the full path 
to the file. If the create parameter is true, the file is created. 

Syntax
public String getTempFileName(boolean create)

Parameters

Returns

The full path to the temporary file name.

Details

If create is set to false, the file must be programmatically created. It is recommended that you set 
create to true.

url The URL used to create a FileDataBuffer object.

create Set this parameter to true to create the file.



Adobe LiveCycle Forms Data Manager Module API
XML Form Module API Reference  manageTempFile     32

manageTempFile
Requests that the DataManager object include the specified file as part of the transaction, even if the file 
is outside the transaction-specific temporary directory. The DataManager object maintains a list of 
managed files and deletes them at the end of the transaction.

Syntax
public void manageTempFile(String filePath)

throws InvalidSourceException

Parameters

Throws

InvalidSourceException if an invalid filePath value is specified. 

DataBuffer interface
The DataBuffer interface is the base class for the FileDataBuffer interface and provides a handle to 
the underlying data that may be exchanged between cooperating applications. The underlying data can 
originate from a file, a network socket, shared memory, or a variety of other sources.

getBufLength
Returns the size of the DataBuffer object in bytes.

Syntax
public long getBufLength()

Returns

The size of the DataBuffer object in bytes.

getBytes
Returns nBytes of data starting from position pos of the DataBuffer. If you specify an invalid value for 
the pos parameter, a run-time error occurs. Run-time exceptions are also thrown for out of memory 
conditions, as well as insufficient permission to read the underlying file (when using FileDataBuffers 
objects).

Syntax
public byte[] getBytes(long pos, long nBytes)

filePath The file that is part of the transaction. 



Adobe LiveCycle Forms Data Manager Module API
XML Form Module API Reference  getContentType     33

Parameters

Returns

nBytes of data starting from position pos. 

getContentType
Returns the content type (MIME-type) of the underlying data, if available.

Syntax
public String getContentType()

Returns

A string that identifies the content type (MIME-type). If the content type is not available, a string 
containing the value unknown is returned. This method returns the content type of the data that can be 
set using the setContentType method. 

setContentType
Sets the content type for the underlying data in the DataBuffer object.

Syntax
public void setContentType(String contentType)

throws org.omg.CORBA.BAD_INV_ORDER

Parameters

Throws

This method is used once for a given DataBuffer object. After the content type is set, setting it again 
throws an org.omg.CORBA.BAD_INV_ORDER exception.

pos The starting position from which to return data. This value is zero-based.

nBytes The number of bytes of data to return. 

contentType The content type to set:

● url-encoded

● text/xml

● application/xml

● application/vnd.adobe.xdp



Adobe LiveCycle Forms Data Manager Module API
XML Form Module API Reference  FileDataBuffer interface     34

FileDataBuffer interface
The FileDataBuffer interface extends the DataBuffer interface. It provides a DataBuffer that is 
saved to a file located on a disk. The operations provided by this interface are primarily file related.

The actual implementation of the FileDataBuffer interface does not keep track of information about 
the saved file other than it exists and is readable. Furthermore, the implementation does not provide 
access to the actual data contained in the file.

getFilePath
Returns the full path to the file on which a FileDataBuffer object is based.

Syntax
public String getFilePath()

Returns

The full path to the file on which a FileDataBuffer object is based.

DMUtils class
The DMUtils class enables you to perform programmatical tasks involving data sets such as reading a 
data input stream into a temporary file and placing the file into a DataBuffer object. All DMUtils 
methods are static. For information about creating a DMUtils object, see the “Invoking LiveCycle Forms” 
chapter in Developing Custom Applications.

getDataBuffer
This method consists of two signatures. The first signature takes an InputStream and reads it into a 
temporary file. This method then creates a DataBuffer object and wraps it around the temporary file.

The second signature takes a DataHandler object, uses the associated InputStream to get the data 
into a temporary file, and creates a DataBuffer for the temporary file. This method also sets the content 
type value based on the DataHandler content type.

Syntax
public static DataBuffer getDataBuffer(DataManager dm, InputStream is)
public static DataBuffer getDataBuffer(DataManager dm, DataHandler dh)

Parameters

dm A reference to a DataManager object. 

is The InputStream that is read into a temporary file. 

dh The DataHandler object that uses the associated InputStream to get data into a temporary 
file.



Adobe LiveCycle Forms Data Manager Module API
XML Form Module API Reference  getDataHandler     35

Returns

A DataBuffer object that wraps a temporary file. 

getDataHandler
Takes a DataBuffer object and creates a DataHandler object for the data associated with the 
DataBuffer. If the DataBuffer object is a FileDataBuffer object, a DataHandler object is created 
that wraps the underlying file.

Syntax
public static DataHandler getDataHandler(DataManager dm, DataBuffer db)

Parameters

Returns

A DataHandler object created by this method. 

getInputStream
Takes a DataBuffer object and creates an InputStream object associated with the data. If the 
underlying DataBuffer object is a FileDataBuffer, this method creates a FileInputStream 
object associated with the underlying file.

Syntax
public static InputStream getInputStream(DataManager dm, DataBuffer db)

Parameters

Returns

An InputStream associated with the data. 

dm A reference to a DataManager object. 

db The required DataBuffer object.

dm A reference to a DataManager object. 

db The required DataBuffer object.



     36

3 Connection API

The Connection API enables client applications to use the Data Manager Module API. This API is 
functionality similar to a JDBC data source, a JCA connection factory, or an EJB home interface in that it is a 
registered factory for retrieving transaction-associated resources. 

The Connection API consists of one interface named ConnectionFactory, which consists of a method 
named getConnection. To create connections to the modules, you must perform a JNDI look-up and 
then the getConnection() method. Although this chapter describes how to use this API to create a 
connection to the Data Manager Module, it does not contain all required information, such as which 
import statements to include and which JAR files to add to your project’s build path. For complete 
information about creating connections to modules, including which Java import statements to include, 
see the “Invoking LiveCycle Forms” chapter in Developing Custom Applications.

ConnectionFactory interface
The ConnectionFactory interface lets you create a connection to a module. You cannot instantiate a 
ConnectionFactory object using a constructor. Instead, you create a ConnectionFactory object by 
performing a JNDI look-up using Java classes, such as the Context class and the 
PortableRemoteObject class.

After you create a Context object, perform a JNDI look-up by calling its lookup method and specify a 
module. Pass one of the following values to the lookup method:

● DataManagerService - To perform a look-up on the Data Manager Module

● PDFManipulation - To perform a look-up on the Invoking LiveCycle Forms

● XMLFormService - To perform a look-up on the Invoking LiveCycle Forms

After you call the lookup method, call the PortableRemoteObject object’s narrow method to ensure 
that the object returned from the lookup method can be cast to a ConnectionFactory object. The 
following code example shows how to create a ConnectionFactory object while performing a look-up 
on the Invoking LiveCycle Forms service:

//Create a Context object
Context namingContext = new InitialContext();

// Lookup the Data Manager service
Object dmObject = namingContext.lookup("DataManagerService");
ConnectionFactory dmConnectionFactory = (ConnectionFactory)

PortableRemoteObject.narrow(dmObject,ConnectionFactory.class);

getConnection
Opens a connection to the specified module.

Syntax
public Object getConnection()

throws RemoteExpression



Adobe LiveCycle Forms Connection API
XML Form Module API Reference  getConnection     37

Details

This method returns a CORBA object representing a connection to the module. You must cast the return 
value to org.omg.CORBA.Object.

This method must be called from a valid JTA transaction. It returns a CORBA object representing the 
module that is allocated to the current transaction. Connections are allocated per transaction; multiple 
calls to this method from the same transaction returns the same object. Connections are automatically 
destroyed when the transaction is complete. 

Returns

A connection to a module.

Throws

RemoteExpression if you attempt to look up an invalid module. For example, if you pass an invalid 
value to the Context object’s lookup method, a RemoteExpression is thrown.

Example

The following example shows how to create a DataManager object using the ConnectionFactory 
interface’s getConnection method:

//Declare a ConnectionFactory object
ConnectionFactory dmConnectionFactory = null;

// Lookup the Data Manager service
Object dmObject = namingContext.lookup("DataManagerService");
dmConnectionFactory = (ConnectionFactory)

PortableRemoteObject.narrow(dmObject,ConnectionFactory.class);

//Start the transaction
transaction.begin();

//Get a DataManager object
DataManager mDataManager =

DataManagerHelper.narrow((org.omg.CORBA.Object)dmConnectionFactory.
getConnection());

//Perform tasks using the DataManager object
//Commit the transaction
transaction.commit();

Note: For a complete explanation of this code example, including the UserTransaction.begin 
method (transaction is UserTransaction object), see the “Invoking LiveCycle Forms” chapter 
in the Developer’s Guide.



     38

Index

C
clearMessages method  9
ConnectionFactory interface  36
create method  7
createDefault method  8
createFileDataBuffer method  30
createFileDataBufferFromUrl method  31

D
Data Manager Module API methods

createFileDataBuffer  30
createFileDataBufferFromUrl  31
getBufLength  32
getBytes  32
getContentType  33
getDataBuffer  34
getDataHandler  35
getFilePath  34
getInputStream  35
getTempFileName  31
manageTempFile  32
setContentType  33

DataBuffer interface  32
DataManager interface  30
DMUtils class  34

E
exportXDP method  9, 11

F
FileDataBuffer interface  34
Form interface  9
FormFactory interface  7

G
getBufLength method  32
getBytes method  32
getConfigValue method  12
getConnection method  36
getContentType method  33
getDataBuffer method  34
getDataHandler method  35
getFilePath method  34

getInputStream method  35
getMessages method  9
getPacketList method  13
getPageCount method  13
getTempFileName method  31

I
importPackets method  14
interfaces

ConnectionFactory  36
DataBuffer  32
DataManager  30
FileDataBuffer  34
Form  9
FormFactory  7

isPacketPresent method  14

M
manageTempFile method  32

R
render method  15
ReturnStatus enumeration  17

S
setConfigValue method  16
setContentType method  33

X
XML Form Module API methods

clearMessages  9
create  7
createDefault  8
exportXDP  9, 11
getConfigValue  12
getMessages  9
getPacketList  13
getPageCount  13
importPackets  14
isPacketPresent  14
render  15
setConfigValue  16



bbc

Adobe® LiveCycle™ Forms
July 2006  Version 7.2

Developing Custom Applications



© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle™ Forms 7.2 Developing Custom Applications for Microsoft® Windows®, UNIX®, and Linux
Edition 3.0, July 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished 
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part 
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, 
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected 
under copyright law even if it is not distributed with software that includes an end user license agreement. 

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in the informational content contained in this guide. 

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The 
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to 
obtain any permission required from the copyright owner.

Any references to company names and company logos in sample material or in the sample forms included in this software are for 
demonstration purposes only and are not intended to refer to any actual organization. 

Adobe, the Adobe logo, Acrobat, LiveCycle, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the 
United States and/or other countries. 

Linux is a registered trademark of Linus Torvalds. 

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

This product includes code licensed from RSA Security, Inc. 

Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, 
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. 
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, 
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users 
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein. 
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if 
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.



     3

Contents

List of Examples ........................................................................................................................... 7

Preface .......................................................................................................................................... 8

1 Introduction ............................................................................................................................... 10
LiveCycle Forms APIs...................................................................................................................................................................11

Form Server Module API......................................................................................................................................................11
XML Form Module API..........................................................................................................................................................12
Data Manager Module API..................................................................................................................................................13

About form types .........................................................................................................................................................................13
Interactive forms ....................................................................................................................................................................13
Non-interactive forms ..........................................................................................................................................................13
Dynamic forms........................................................................................................................................................................13

Server-side dynamic forms...........................................................................................................................................14
Client-side dynamic forms............................................................................................................................................14

Static forms...............................................................................................................................................................................14
Rendering different form types ........................................................................................................................................15

Planning a LiveCycle Forms client application ..................................................................................................................16
Creating form designs for LiveCycle Forms..................................................................................................................17
Designing form designs to render as HTML.................................................................................................................18

HTML pages .......................................................................................................................................................................18
Running scripts.................................................................................................................................................................18
Event timing ......................................................................................................................................................................19
LiveCycle Designer buttons .........................................................................................................................................20
HTML 4.0 web browser ..................................................................................................................................................20
Maintaining presentation changes ...........................................................................................................................20
Caching forms...................................................................................................................................................................21

LiveCycle Forms processing requests ...................................................................................................................................21
Requesting a form .................................................................................................................................................................21

Using Form Design buttons.........................................................................................................................................23
Submit button ..................................................................................................................................................................23
Calculate button ..............................................................................................................................................................26

2 Invoking LiveCycle Forms ......................................................................................................... 28
Including LiveCycle Forms library files .................................................................................................................................28
Invoking the Form Server Module .........................................................................................................................................30

Locally invoking Form Server Module............................................................................................................................31
Remotely invoking Form Server Module.......................................................................................................................32
Invoking Form Server Module using SOAP...................................................................................................................34
Invoking Form Server Module using the Microsoft .NET client assembly .........................................................36
Creating Form Server Module objects using the FormServerFactory class......................................................38

Creating a SOAPClient object using the FormServerFactory class ................................................................38
Creating an EJBClient object to locally invoke Form Server Module............................................................39
Creating an EJBClient object to remotely invoke Form Server Module.......................................................39



Adobe LiveCycle Forms Contents
Developing Custom Applications       4

2 Invoking LiveCycle Forms (Continued)
Invoking the Data Manager Module .....................................................................................................................................40

Creating a DataManager object........................................................................................................................................41
Using the DMUtils object ....................................................................................................................................................42
Working with the Document object ...............................................................................................................................43

Creating a Document object using a remote file.................................................................................................43
Creating a Document object using a data stream...............................................................................................44
Creating a Document object using a local file ......................................................................................................44
Returning the content of a Document object to a file .......................................................................................45
Writing the content of a Document object to a data stream ..........................................................................45

Invoking the XML Form service...............................................................................................................................................45
Creating a Form object ........................................................................................................................................................45

3 Rendering Interactive Forms as PDF........................................................................................ 48
About rendering PDF forms .....................................................................................................................................................48
Rendering a form using an EJBClient object ......................................................................................................................52

Specifying the form design to render.............................................................................................................................53
Passing a zero-length byte array ......................................................................................................................................53
Setting preference options to render the form as PDF ...........................................................................................53
Specifying the web context of a client application ...................................................................................................53
Specifying the target URL ..................................................................................................................................................54
Specifying the PDF version.................................................................................................................................................54
Caching PDF forms ................................................................................................................................................................54
Caching PDF forms in the client web browser ............................................................................................................55
Accessing LiveCycle Form Manager application store.............................................................................................55
Setting the Standalone option..........................................................................................................................................55
Setting XCI run-time options .............................................................................................................................................56
Creating application logic to render a form as PDF ..................................................................................................57

Rendering a Form using a SOAPClient object ...................................................................................................................58
Retrieving submitted form data..............................................................................................................................................60

Form design considerations...............................................................................................................................................60
Relationship between form fields and XML data .......................................................................................................61
Creating application logic to retrieve submitted data .............................................................................................62
Saving submitted data as XML..........................................................................................................................................65
Converting the content type of form data ...................................................................................................................66

Rendering prepopulated forms ..............................................................................................................................................68
Creating application logic to render a prepopulated form ....................................................................................68

Converting an XML document to a byte stream..................................................................................................69
Converting an XML string to a byte stream ...........................................................................................................71

Prepopulating a form using a Document object........................................................................................................72
Rendering a form at the client.................................................................................................................................................74
Passing a form design by value...............................................................................................................................................77

4 Rendering Dynamic Forms........................................................................................................ 79
About dynamic forms ................................................................................................................................................................79

Form design considerations...............................................................................................................................................80
XML data source .....................................................................................................................................................................80

Rendering prepopulated dynamic forms............................................................................................................................82
Creating an in-memory XML data source .....................................................................................................................83
Converting the XML data source to a byte array........................................................................................................87
Rendering a prepopulated dynamic form ....................................................................................................................89



Adobe LiveCycle Forms Contents
Developing Custom Applications       5

5 Rendering Forms as HTML ........................................................................................................ 91
Client applications rendering HTML forms .........................................................................................................................91

Form considerations .............................................................................................................................................................92
Rendering a form as HTML .......................................................................................................................................................92

Setting preference options to render the form as HTML ........................................................................................92
Specifying the client applications web context..........................................................................................................93
Caching HTML forms.............................................................................................................................................................93
 Creating application logic to render a form as HTML..............................................................................................93

6 Calculating Form Data............................................................................................................... 95
About form design scripts.........................................................................................................................................................95
Handling a form containing a script......................................................................................................................................96

Rendering a form that contains a script ........................................................................................................................97
Creating application logic to handle a form containing a calculation script ...................................................98

7 Working with PDF Form Fields ...............................................................................................100
Importing form data................................................................................................................................................................. 100
Exporting form data ................................................................................................................................................................. 101
Flattening form fields............................................................................................................................................................... 102

8 Transferring PDF Data.............................................................................................................103
About transferring data .......................................................................................................................................................... 103

Form design considerations............................................................................................................................................ 104
Retrieving submitted PDF data ............................................................................................................................................ 105
Creating a PDF document...................................................................................................................................................... 106
Saving a PDF document.......................................................................................................................................................... 108

9 Authenticating Users...............................................................................................................110
About user authentication..................................................................................................................................................... 110
Performing user authentication........................................................................................................................................... 111

Programmatically authenticating a user .................................................................................................................... 111
Setting the LiveCycle Forms invocation context..................................................................................................... 112
Creating application logic to authenticate users .................................................................................................... 112

10 Rendering Forms from .NET....................................................................................................114
Client applications rendering PDF forms.......................................................................................................................... 114
Rendering a form using the Microsoft .NET client assembly..................................................................................... 115
Retrieving submitted data ..................................................................................................................................................... 117
Rendering prepopulated forms ........................................................................................................................................... 119

Creating application logic to render a prepopulated form ................................................................................. 119

11 Rendering Forms using the XML Form Module API ..............................................................121
Creating a Form object............................................................................................................................................................ 121
Importing packets..................................................................................................................................................................... 124

Importing a template packet.......................................................................................................................................... 124
Importing a datasets packet ........................................................................................................................................... 124
Determining if a packet exists ........................................................................................................................................ 125

Setting configuration values................................................................................................................................................. 125
Setting the destination configuration value............................................................................................................. 125
Setting the pdf.xdc.uri configuration value .............................................................................................................. 125
Determining a configuration value .............................................................................................................................. 126

Rendering PDF documents.................................................................................................................................................... 126



Adobe LiveCycle Forms Contents
Developing Custom Applications       6

A Character Sets and Unicode Encodings .................................................................................129

B Language and Locale Combinations......................................................................................130

Glossary ....................................................................................................................................133

Index .........................................................................................................................................137



     7

List of Examples

Example 2.1 Remotely invoking Form Server Module using the EJBClient object ...........................................................34

Example 2.2 Remotely invoking Form Server Module using the SOAPClient class ..........................................................36

Example 2.3 Creating a SOAPClient object using the FormServerFactory class ................................................................38

Example 2.4 Creating a local EJBClient object using the FormServerFactory class ..........................................................39

Example 2.5 Creating a remote EJBClient object using the FormServerFactory class.....................................................40

Example 2.6 Creating a DataManager object .................................................................................................................................42

Example 2.7 Creating a Document object using a remote file.................................................................................................43

Example 2.8 Creating a Document object using a data stream...............................................................................................44

Example 2.9 Creating a Document object using a local file ......................................................................................................44

Example 2.10 Returning the content of a Document object to a file .......................................................................................45

Example 2.11 Writing the content of a Document object to a data stream ..........................................................................45

Example 2.12 Creating a Form object using createDefault..........................................................................................................47

Example 3.1 Rendering a form to a client web browser using an EJBClient object..........................................................57

Example 3.2 Rendering a form to a client web browser using a SOAPClient object........................................................58

Example 3.3 Retrieving submitted form data.................................................................................................................................64

Example 3.4 Saving submitted data as XML ...................................................................................................................................66

Example 3.5 Prepopulating a form by converting an XML document to a byte stream ................................................70

Example 3.6 Prepopulating a form by converting a string variable to a byte stream .....................................................71

Example 3.7 Prepopulating a form using a Document object .................................................................................................72

Example 3.8 Rendering a form at the client ....................................................................................................................................75

Example 4.1 Creating an in-memory XML data source ...............................................................................................................84

Example 4.2 Converting an in-memory XML data source to a byte array............................................................................88

Example 4.3 Rendering a prepopulated dynamic form..............................................................................................................89

Example 5.1 Rendering a form as HTML to a client web browser ...........................................................................................94

Example 6.1 Handling a form containing a calculation script ..................................................................................................98

Example 8.1 Retrieving submitted PDF data ............................................................................................................................... 105

Example 8.2 Creating a PDFDocument object using a temporary file containing PDF data ..................................... 107

Example 8.3 Saving a PDF document ............................................................................................................................................. 109

Example 9.1 Authenticating a user with User Manager........................................................................................................... 113

Example 10.1 Rendering a form to a client web browser .......................................................................................................... 116

Example 10.2 Retrieving data from a form...................................................................................................................................... 118

Example 11.1 Creating a Form object by using the FormFactory object’s create method ........................................... 123

Example 11.2 Rendering a PDF document by using the Form object’s render method................................................ 127



     8

Preface

This guide provides information about Adobe® LiveCycle™ Forms, one of the many products provided by 
Adobe document services.

What’s in this guide?

This guide describes the development environment, the architecture, and the required activities from 
planning to deployment. This guide explains how to use the APIs to develop client applications. It is a 
companion guide to the Form Server Module API Reference and the XML Form Module API Reference.

Who should read this guide?

This guide is intended for developers who are responsible for developing client applications for LiveCycle 
Forms.

Related documentation

In addition to this guide, the resources in the table provide information about LiveCycle Forms. 

For information about See

Understanding what LiveCycle Forms is and how it 
integrates with other Adobe products

Overview 

Installing, configuring, and administering LiveCycle 
Forms in a development and run-time environment

Installing and Configuring LiveCycle for JBoss
Installing and Configuring LiveCycle for WebSphere
Installing and Configuring LiveCycle for WebLogic

The Form Server Module API, including a description 
and explanation of its classes and methods

Form Server Module API Reference 

Note: This is in HTML format.

The XML Form Module API, including a description 
and explanation of its classes and methods

XML Form Module API Reference

The Adobe User Management SPI, including a 
description and explanation of its classes and 
methods

Adobe User Management SPI Reference

Using the User Management SPI to develop 
custom service providers

Developing User Management Service Providers

The new features in this product release What’s New

The form objects and associated properties that 
are supported in each web browser.

Transformation Reference



Adobe LiveCycle Forms Preface
Developing Custom Applications       9

Other services and products that integrate with
LiveCycle Forms

www.adobe.com 

Patch updates, technical notes, and additional 
information on this product version.

www.adobe.com/support/products/
enterprise/index.html

For information about See

http://www.adobe.com/support/products/enterprise/index.html
http://www.adobe.com


     10

1 Introduction

This chapter provides an overview of Adobe LiveCycle Forms architecture, a description of LiveCycle 
Forms APIs, a summary of each module, and a planning section. 

LiveCycle Forms APIs are used to create applications that access the services of specific modules that make 
up LiveCycle Forms. All LiveCycle Forms modules are stateless and are only accessible through the 
corresponding APIs. For example, you can invoke the Form Server Module using the Form Server Module 
API. The following diagram shows each LiveCycle Forms API accessing its corresponding service. 

LiveCycle Forms Architecture

LiveCycle Forms APIs provide public Java interfaces for different modules. Each module runs as a Java 2 
Enterprise Edition (J2EE) service on your J2EE application server. You use a Java development 
environment to create applications, such as Java servlets, that interact with specific modules. For example, 
you can create a Java servlet that invokes the Form Server Module in response to an end user clicking a link 
that is displayed within a web browser.

The Form Server Module API contains a managed client assembly for Microsoft® .NET. Using this client 
assembly, you can create web service client applications in the Microsoft Visual Studio .NET 2003 
development environment that interact with the Form Server Module. For information, see “Rendering 
Forms from .NET” on page 114.

LiveCycle Forms integrates SOAP. Using both the Java-based and .NET-based client libraries, you can 
create applications that access the LiveCycle Forms remotely from any platform.

Note: This guide does not discuss how to install and deploy LiveCycle Forms to a J2EE application server. 
For information, see the Installing and Configuring guide for your application server.

EJB Client API
(Java)

SOAP Client API
(Java)

Microsoft .NET 
Client Assembly

SOAP

SOAP

Form Server Module

Java API

XML Form Module

Java API

Data Manager Module

Java API

RMI



Adobe LiveCycle Forms Introduction
Developing Custom Applications  LiveCycle Forms APIs     11

LiveCycle Forms APIs
LiveCycle Forms consists of modules that perform specific operations. All modules, with the exception of 
the Font Manager Module, provide a public Java API. The following table identifies each module that has a 
public API and provides a brief description of when you would use the API in your client applications.

For information on how to invoke each module, see “Invoking LiveCycle Forms” on page 28.

Form Server Module API

You use the Form Server Module API to create interactive data capture applications. The Form Server 
Module validates, processes, transforms, and delivers forms typically created in Adobe LiveCycle Designer. 
Form authors can develop a single form design that the Form Server Module can render in PDF or HTML 
format in a variety of browser environments. 

When an end user requests a form, a client application, such as a Java servlet, sends the request to the 
Form Server Module, which returns the form in an appropriate format to the end user. When the Form 
Server Module receives a request for a form, it uses a set of transformations to merge data with a form 
design and then delivers the form in a format that best matches the presentation and form filling 
capabilities of the target browser.

Product module When to use each API See summary on

Form Server Module Use this API to create interactive data capture 
applications that render XML forms displayed 
as either HTML or PDF to a client device, typically 
web browsers, and process form submissions. 
Processing a form submission means handling data 
that a user enters into a form using a client device, 
such as a web browser. 

page 11 

XML Form Module Use this API to create non-interactive applications 
for rendering forms. For example, you can use the 
XML Form Module API to produce a large, 
multi-document, non-interactive output stream.

Note: The XML Form Module API is deprecated. 

page 12 

Data Manager Module Use this API to invoke the XML Form Module. For 
information, see “Invoking the XML Form service” on 
page 45.

An important component of this API is the Document 
object, which is used by the Form Server Module API. 
For information, see “Working with the Document 
object” on page 43.

This API is also used to transfer data from one LiveCycle 
product to another. For information, see
“Transferring PDF Data” on page 103.

page 13 



Adobe LiveCycle Forms Introduction
Developing Custom Applications  XML Form Module API     12

The Form Server Module performs the following functions:

● Provides server-side execution of the intelligence that is in the form design. The Form Server Module 
executes the validations and calculations included in the form design and returns the resulting data to 
the browser. For information, see “Calculating Form Data” on page 95.

● Detects whether form design scripts should run on the client or the server. For clients that support 
client-side scripting such as Internet Explorer 5.0 and later, an appropriate scripting model is loaded 
into the device so that the scripts can run directly on the client computer. For information about the 
properties and methods supported in each transformation, see the LiveCycle Designer Help.

● Dynamically generates a PDF or an HTML document of the form design with or without data. An HTML 
form can deliver multipage forms page by page. In contrast, a PDF form delivers all the pages at once. 
In LiveCycle Designer, the form author can script the current page number in the form design. The 
Form Server Module can merge one page of data submitted at a time or merge only the single page 
into the form design. 

● Supports dynamic subforms created in LiveCycle Designer. Form Server Module adds extra fields and 
boilerplate as a result of merging the form design with data or as a result of scripting. In the case of 
HTML, the added subforms can grow to unlimited page lengths. In the case of PDF, the added 
subforms paginate at the page lengths specified in the form design.

● Validates data entry by performing calculations, accessing databases, or enforcing business rules on 
field-level data.

● Displays validation errors in different ways (split frame left, top, right, bottom; no frame left, top, right, 
bottom; or no UI). This is all done without maintaining any state on the server. The validation errors are 
also made available in the XML-based validation error document.

● Maintains the state of any pass-through data that has been passed in by the application. Pass-through 
data is data that does not have corresponding fields on the form design being processed. The 
pass-through data is passed back to the calling application after the target device submits the data.

● Enables a non-technical user to amend a form design by using LiveCycle Designer to meet ongoing 
business requirements. In contrast, a web application that displays HTML pages may require a user to 
modify HTML or XML source code to make changes to a web page.

XML Form Module API

You typically use the XML Form Module API to create applications that can process and work with 
non-interactive forms and large data sets. Using this API, you can create applications that perform 
non-interactive form rendering operations such as these:

● Loading XML data into an XML Data Package (XDP) file

● Loading XML data into a PDF file that contains XDP information

● Controlling configuration and data-loading options

● Rendering PDF documents

● Extracting XML data from an XDP file

For information on how to use the XML Form Module API, see “Rendering Forms using the XML Form 
Module API” on page 121.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Data Manager Module API     13

Data Manager Module API

You use the Data Manager Module API to invoke the XML Form Module and to transfer data as a stream of 
bytes. For information on how to use the Data Manager Module API, see “Invoking the Data Manager 
Module” on page 40.

About form types
Before you start using the LiveCycle Forms API to create an application that interacts with LiveCycle Forms, 
you should have a solid understanding of the different form types that are used by LiveCycle Forms. This 
section describes these form types.

Interactive forms

An interactive form contains one or more fields for collecting information interactively from a user. An 
interactive form design produces a form that can be filled online or (in the case of PDF forms) offline. Users 
can open the form in Acrobat, Adobe Reader, or an HTML browser and enter information into the form’s 
fields. An interactive form can include buttons or commands for common tasks, such as saving data to a 
file or printing. It can also include drop-down lists, calculations, and validations.

Note: An interactive form can be dynamic or static.

Non-interactive forms

A non-interactive form does not respond to user interaction. This form type is often a PDF form that is 
downloaded by a user, printed, and filled manually. A non-interactive dynamic form can be prepopulated 
with data, and then made available to the users. For example, billing statements are an example of a 
non-interactive form. 

Note: A non-interactive form can be dynamic or static.

Dynamic forms

A dynamic form has a dynamic layout that changes based on data prepopulation or through user 
interaction. A dynamic form may be interactive or non-interactive. A non-interactive dynamic form is 
prepopulated with data, then made available to a user without interactive features. An interactive dynamic 
form may or may not be prepopulated with data, but contains interactive fields or other interactive 
features that enables a user to interact with it.

A dynamic form design specifies a set of layout, presentation, and data capture rules, including the ability 
to calculate values based on user input. The rules are applied when a user enters data into the form or 
when a server merges data into a form. Dynamic forms are usually rendered by LiveCycle Forms or Acrobat 
7.0 and Adobe Reader 7.0. Dynamic forms are particularly useful when displaying an undetermined 
amount of data to users. You do not need to predetermine a fixed layout or number of pages for the form, 
as is required by a static form. When rendered as a PDF form, intelligent page breaks are generated.

Two types of dynamic forms exist: server-side and client-side dynamic forms. Both server-side and 
client-side dynamic forms are based on form designs that are created in LiveCycle Designer.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Static forms     14

Server-side dynamic forms

A server-side dynamic form can be a data-driven dynamic form; that is, the form is populated with data 
during rendering. The amount of data determines the form’s layout. Multiple data value instances can be 
provided for a given field, causing the field to dynamically replicate so that each data value is displayed 
within the form.

Fields that are dynamically added to a dynamic form are contained in structures called subforms, which 
are located within the form design. An example of a server-side dynamic form is one that is part of a client 
application that queries a database and retrieves an unknown number of records. After retrieving records 
from a database, the application calls the LiveCycle Forms API to merge the data into the form. After the 
data is merged into the form, the application renders the form to a user. 

Client-side dynamic forms

A client-side dynamic form is typically used to collect data from end users by enabling them to click a 
button (or another control) that produces a new field in which data is entered. The new field appears on 
the form immediately and does not require a round trip to the server. That is, the form is not sent to the 
J2EE application server hosting LiveCycle Forms and then rendered back to the client web browser with 
the new field. An example of a client-side dynamic form is one that contains fields that enable a user to 
enter items to purchase and a button that enables the user to add new fields. Each time the user clicks the 
button, a new subform is added to the form (a subform can contain a set of related fields).

Static forms

A static form has a fixed layout that does not change regardless of how much data is placed into the fields. 
A static form can be interactive, in which case a user fills the form, or non-interactive, in which case a server 
may prepopulate the form with data. Any fields left unfilled are present in the form but empty. Conversely, 
if there is more data than the form can hold, the form cannot expand to accommodate the excess data.

In the case of an interactive form, the end user cannot enter extra information beyond what the form fields 
can hold. Similarly, excess data merged by LiveCycle Forms overruns the area bounded by the object and 
the excess data is not displayed. As a result, when creating a static form, form authors position and size the 
objects in such a way that the objects can accommodate the largest expected set of data.

Static PDF forms are created by LiveCycle Designer when a form design is saved as a PDF file, or they can 
be rendered on the server by passing an XDP file to LiveCycle Forms. A static form can be generated from 
a dynamic form design, but once rendered as PDF, the background is locked. Static forms are easily 
cacheable on the server, so are quickly accessed when requested by a user.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Rendering different form types     15

Rendering different form types

LiveCycle Forms is capable of rendering the form types that are described in this section as either PDF or 
HTML. For example, LiveCycle Forms can render an interactive form as PDF or an non-interactive form as 
HTML. The following diagram shows the different form types that LiveCycle Forms can render.

Static StaticDynamic Dynamic Static StaticDynamic Dynamic



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Planning a LiveCycle Forms client application     16

Planning a LiveCycle Forms client application
Before you use the Form Server Module API to create a client application that interacts with LiveCycle 
Forms, it is recommended that you plan your application. Creating application logic using the Form Server 
Module API represents only one aspect of creating a LiveCycle Forms application.

LiveCycle Forms requires form designs created using LiveCycle Designer. Form designs are XML templates 
that are saved as either .xdp or .pdf files. LiveCycle Forms outputs forms that are displayed as either HTML 
or PDF. The following diagram shows the valid input and output of LiveCycle Forms.

As shown in this diagram, if the form design is saved as an .xdp file, LiveCycle Forms can output a form that 
is displayed as either HTML or PDF. However, if the form design is saved as a .pdf file, LiveCycle Forms can 
only output a form that is displayed as PDF. That is, LiveCycle Forms cannot output a form that is displayed 
as HTML if the form design is saved as a .pdf file. 

The first step in planning your application is to determine the output format of the forms. If you want 
LiveCycle Forms to output forms that are displayed as HTML, then save your form designs as .xdp files. For 
information about creating form designs to output as HTML, see “Designing form designs to render as 
HTML” on page 18.

If you want LiveCycle Forms to output forms that are displayed as either HTML or PDF, save your form 
designs as .xdp files. If you want LiveCycle Forms to only output forms as PDF, save your form designs as 
.pdf or .xdp files. You specify the form’s output format when creating application logic. For information, see 
“Setting preference options to render the form as PDF” on page 53.

LiveCycle Forms using a form design saved as an .xdp file

Adobe LiveCycle
Forms

PDF

A form displayed as PDF

Output



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Creating form designs for LiveCycle Forms     17

Next, plan the content of your form designs. Form design content varies from simplistic form designs that 
contain text and text box fields to complex form designs that contain multiple pages, different controls 
(such as radio buttons and drop-down lists), and scripts. Even though this guide does not discuss how to 
use LiveCycle Designer to create form designs, it contains sections that discuss issues related to form 
designs. For information about using LiveCycle Designer to create form designs, see the LiveCycle Designer 
Help.

After you create your form designs, you are ready to use the Form Server Module API to start developing a 
LiveCycle Forms client application. The first step is to invoke LiveCycle Forms. For information, see 
“Invoking LiveCycle Forms” on page 28.

Creating form designs for LiveCycle Forms

Behavioral differences exist between form designs that are used to render PDF and HTML. Because form 
designs that are rendered as PDF are viewed using Adobe Acrobat® Professional or Acrobat Standard or 
Adobe Reader®, the form supports a full range of object properties that you define in the form design.

When you create a form design that uses a client-side subform control (using the InstanceManager), you 
can successfully view the PDF form in LiveCycle Designer using the PDF Preview option. A user can 
dynamically add rows, without first submitting the form to LiveCycle Forms and having the form rendered 
back with the additional rows. However, to use the form design in LiveCycle Forms, you must render the 
form at the client. For information, see “Rendering a form at the client” on page 74.

Static text placed in subforms that flow content left to right and contain rectangle fills does not display 
when rendered in Internet Explorer. To ensure that static text always appears, you need to place static text 
in subforms that position content left to right, rather than flow content left to right. 

If you are rendering a form as HTML, some client devices (for example, older web browsers) do not provide 
the same level of support for individual object properties. To create a single form design that reduces 
these limitations, follow this process: 

1. Consult the Transformation Reference to determine how objects behave in a particular client device.

2. If you are designing a static form and want to output the form as HTML, you must enable 
transformation caching. For information, see the LiveCycle Designer Help. 

3. When creating the form design, try to work around any limitations in the client applications by finding 
ways to implement the form without relying on unsupported object properties.

4. If required, include a layout that works for both PDF and HTML formats. 

5. Read the section in LiveCycle Designer Help that discusses creating accessible forms and use the 
guidelines to build accessibility into your form design.

6. Ask your form developer where scripts should run. By default, scripts run on the client. If the scripts that 
you include in a form design should run on the server, or both the client and server, you may have to 
change the default setting. For example, a form design may contain a script that extracts data from a 
database that is only available on the server. In this situation, the default setting must be modified so 
that the script runs at the server.

7. Periodically preview the form using LiveCycle Designer or the client device (for example, a web 
browser) to troubleshoot problems early in the design process.

8. If LiveCycle Forms will be merging forms with data, use test data to thoroughly test your form designs.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Designing form designs to render as HTML     18

Designing form designs to render as HTML

This section discusses issues related to creating form designs that will be rendered as HTML. 

HTML pages

When a form design is rendered as HTML, each second-level subform is rendered as an HTML page (panel). 
You can view a subform’s hierarchy in LiveCycle Designer. Child subforms that belong to the root subform 
(the default name of a root subform is form1) are the panel subforms. The following example is of a form 
design’s subforms. 

form1
Master Pages
PanelSubform1

NestedDynamicSubform
TextEdit1

PanelSubform2
TextEdit1

PanelSubform3
TextEdit1

PanelSubform4
TextEdit1

When form designs are rendered as HTML, the panels are not constrained to any particular page size. If you 
have dynamic subforms, they should be nested within the panel subform. Dynamic subforms are able to 
expand to an infinite number of HTML pages. 

When a form is rendered as HTML, page sizes (required for paginating forms rendered as PDF) have no 
meaning. Because a dynamic form can expand to an infinite number of HTML pages, it is important to 
avoid footers on the master page. A footer beneath the content area on a master page can overwrite HTML 
content that flows past a page boundary. 

You must explicitly move from panel to panel using the xfa.host.pageUp and xfa.host.pageDown 
methods. You change pages by sending a form to LiveCycle Forms and having LiveCycle Forms render the 
form back to the client device, typically a web browser. For information about these methods, see the XML 
Form Object Model Reference. For information about this document, go to 
http://partners.adobe.com/public/developer/livecycle/topic_designer.html.

Note: The process of sending a form to LiveCycle Forms and then having LiveCycle Forms render the form 
back to the client device is referred to as round tripping data to the server.

Running scripts

A form author specifies whether a script executes on the server or the client. LiveCycle Forms creates a 
distributed, event processing environment for execution of form intelligence that can be distributed 
between the client and the server by using the runAt attribute. For information about this attribute, see 
the LiveCycle Designer Help. 

LiveCycle Forms can execute scripts while the form is being rendered. As a result, you can prepopulate a 
form with data by connecting to a database or web services that may not be available on the client. You 
can also set a button’s Click event to run on the server so that the client will round trip data to the server. 
This allows the client to run scripts that may require server resources, such as an enterprise database, while 
a user is interacting with a form. For information, see “Calculating Form Data” on page 95.

http://partners.adobe.com/public/developer/livecycle/topic_designer.html


Adobe LiveCycle Forms Introduction
Developing Custom Applications  Designing form designs to render as HTML     19

You can design forms that move between pages (panels) by calling xfa.host.pageUp and 
xfa.host.pageDown methods. This script is placed in a button’s Click event and the runAt attribute is 
set to Both. The reason you choose Both is so that Acrobat or Adobe Reader (for forms that are rendered 
as PDF) can change pages without going to the server and HTML forms can change pages by round 
tripping data to the server. That is, a form is sent to LiveCycle Forms, and a form is rendered back as HTML 
with the new page displayed. 

For information about using the xfa.host.pageUp and xfa.host.pageDown methods, see the XML 
Form Object Model Reference. For information about this document, go to 
http://partners.adobe.com/public/developer/livecycle/topic_designer.html.

If a form design containing the resetData script method is rendered as an HTML form, the resetData 
method is not invoked within the form. However, if the form design is rendered as a PDF form, the 
resetData method is invoked within the form. This issue applies to LiveCycle Forms 6.0.1, 7.0, 7.0.1, 7.1, 
and 7.2.

The resetData method resets field values that are located within a form. For more information about this 
method, see the Adobe XML Form Object Model 2.2 Reference guide.

XFA subsets

When creating form designs to render as HTML, you must restrict your scripting of the XFA subset. The XFA 
subset supports JavaScript™. 

Scripts that run on the client or run on both the client and the server must be written within the XFA 
subset. Scripts that run on the server can use the full XFA scripting model and also use FormCalc. For 
information about using JavaScript, see the LiveCycle Designer Help. 

When running scripts on the client, only the current panel being displayed can use script. For example, you 
cannot script against fields that are located in panel A when panel B is displayed. When running scripts on 
the server, all panels can be accessed. 

You must also be careful when using Scripting Object Model (SOM) expressions within scripts that run on 
the client. Only a simplified subset of SOM expressions are supported by scripts that run on the client.

Event timing

The XFA subset defines what XFA events are mapped to HTML events. There is a slight difference in 
behavior on the timing of calculate and validate events. In a web browser, a full calculate event is executed 
when you exit a field. Calculate events are not automatically executed when you make a change to a field 
value. You can force a calculate event by calling the xfa.form.execCalculate method.

In a web browser, validate events are only executed when exiting a field or submitting a form. You can 
force a validate event by using the xfa.form.execValidate method.

Forms displayed in a web browser (as opposed to Adobe Reader or Acrobat) conform to the XFA null test 
(errors or warnings) for mandatory fields. If the null test produces an error and you exit a field without 
specifying a value, a message box is displayed and you are repositioned to the field after clicking OK. If a 
null test produces a warning and you exit a field without specifying a value, you are prompted to click 
either OK or Cancel, giving you the option of proceeding without specifying a value or returning to the 
field to enter a value.

For more information about a null test, see LiveCycle Designer Help. 

http://partners.adobe.com/public/developer/livecycle/topic_designer.html


Adobe LiveCycle Forms Introduction
Developing Custom Applications  Designing form designs to render as HTML     20

LiveCycle Designer buttons

Clicking a submit button sends form data to LiveCycle Forms and represents the end of form processing. 
Data is submitted to LiveCycle Forms and, if no validation errors occur, the data is sent to a client 
application. For an example of a client application, see “Sample loan application” on page 49. 

The preSubmit event can be set to run on the client or server. The preSubmit event runs prior to the 
form submission if it is configured to run on the client. Otherwise, the preSubmit event runs on the 
server during the form submission. For more information about the preSubmit event, see the LiveCycle 
Designer Help. 

If validation errors occur, they are displayed according to the validation UI options that are passed to the 
renderForm method’s sOption parameter. For information about this parameter, see the Form Server 
Module API Reference. 

If a button has no client-side script associated with it, data is submitted to the server, calculations are 
performed on the server, and the HTML form is regenerated. If a button contains a client-side script, data is 
not sent to the server and the client-side script is executed in the web browser.

HTML 4.0 web browser 

A web browser that supports HTML 4.0 does not support the XFA subset nor client-side scripting. When 
creating a form design to work in both HTML 4.0 and MSDHTML or CSS2HTML, a script that runs at the 
client will actually run on the server. For example, assume a user clicks a button that is located on a form 
displayed in an HTML 4.0 web browser. In this situation, the form is sent to the server where the client-side 
script is executed. 

It is recommended that you place your form logic in calculate events, which runs at the server in HTML 4.0 
and on the client for MSDHTML or CSS2HTML.

Maintaining presentation changes

As you move between HTML pages (panels), only the state of the data is maintained. Settings such as 
background color or mandatory field settings are not maintained (if different than the initial settings). To 
maintain the presentation state, you must create fields (usually hidden) that represent the presentation 
state of fields. If you add script to a field’s Calculate event that changes the presentation based on 
hidden field values, you are able to preserve the presentation state as you move back and forth between 
HTML pages (panels).

The following script maintains the fillColor of a field based on the value of hiddenField. Assume 
this script is located in a field’s Calculate event. 

If (hiddenField.rawValue == 1)
this.fillColor = "255,0,0"

else
this.fillColor = "0,255,0"



Adobe LiveCycle Forms Introduction
Developing Custom Applications  LiveCycle Forms processing requests     21

Caching forms

LiveCycle Forms caches a form for performance reasons. A form is cached only if the form designer enables 
a form design to be cached. For information, see the LiveCycle Designer Help.

Only form designs that have a static presentation should be cached. LiveCycle Forms caches forms if 
caching is enabled regardless whether the form design is suitable for caching.

For information about caching a form that is rendered as a PDF, see “Caching PDF forms” on page 54.

LiveCycle Forms processing requests
Before using the Form Server Module API to create a client application, it is important to understand how 
LiveCycle Forms processes a request. This section describes how LiveCycle Forms processes requests such 
as a form request, and specifies the order in which events and scripts execute. 

Requesting a form

When a user requests a form from LiveCycle Forms (for example, by clicking a button located on an HTML 
page), the request initiates a series of specific processes and interactions among the client application, 
LiveCycle Forms, and the client device, typically a web browser. The client application invokes the Form 
Server Module API, which is used to render the form to the client device. For information, see “Invoking 
LiveCycle Forms” on page 28.

The following table summarizes the interaction among a client device (for example, a web browser), a 
client application (created by using the Form Server Module API), and LiveCycle Forms when a user 
requests a form. 

User action Client application action LiveCycle Forms action

A user invokes LiveCycle Forms 
from a web page.

Creates an object that inherits 
from the IFormServer interface 
(for example, an EJBClient 
object) and calls the 
renderForm method. For 
information, see “Invoking the 
Form Server Module” on page 30.

Opens the form design. The form 
design is specified by the 
renderForm method’s 
sFormQuery parameter.

If data is passed to LiveCycle Forms 
(in the renderForm method’s 
cData parameter), LiveCycle Forms 
prepopulates the form with the 
data.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     22

Executes all form-wide field 
initialize events.

Executes all form-wide page 
initialize events.

Executes all form-wide field 
calculate events.

Executes all form-wide page 
calculate events.

Executes a page enter event.

Executes a form ready event. 

Executes a page enter or exit event.

Transforms the form design into 
PDF or HTML format. This change is 
defined by the renderForm 
method’s sFormPreference 
parameter.

Returns the form to the client 
application.

Verifies that an error was not 
returned.

 

Creates a binary stream and sends 
it to the client web browser.

Internet Explorer 5.0, Netscape 
Navigator 6.0, and Opera 5.0 
browsers perform these 
actions:

● Runs each field initialization 
marked Run script on client.

● Runs the page initialization 
marked Run script on client.

● Runs each field calculation 
marked Run script on client.

● Runs the page calculations 
marked Run script on client.

Note: These actions only occur 
if the form is rendered as HTML.

 

Views the form as either PDF or 
HTML. 

User action Client application action LiveCycle Forms action



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     23

Using Form Design buttons

For LiveCycle Forms to retrieve form data, perform calculations, or validate field data, the form must 
provide the mechanism to initiate the request. This is typically accomplished through the use of buttons 
that are located on the form design. The caption displayed on a command button label indicates to the 
end user the function of the button. When a user clicks a button, the form-related processing is prompted 
by the script associated with the button. Typically, a button initiates either a submit or a calculate 
operation.

Buttons are the most common way to initiate logic contained in form design scripts. Placing a button on a 
form design in LiveCycle Designer and configuring its submit option implies a submit operation. The 
intent of a submit button is to complete the form and submit data to LiveCycle Forms. However, validation 
operations may interrupt this process. For example, if a user enters a wrong value into a field, the user may 
have to correct the value before the form data can be submitted to LiveCycle Forms. Placing other button 
types on the form implies a calculate operation. The intent of a calculate operation is to run calculations 
and update the form prior to a submit operation.

Submit button

A button can submit form data as either XML or PDF data to LiveCycle Forms. For example, assume a user 
fills an interactive form and then clicks a submit button. This action results in the form data being 
submitted to LiveCycle Forms. A client application, such as a Java servlet that is created by using the Form 
Server Module API, can retrieve the data. For information, see “Retrieving submitted form data” on 
page 60.

A PDF form can submit up to four different variations (XDP, XML, PDF, and URL encoded data). An HTML 
form only submits URL encoded name-value pairs. By default, when the submission format is PDF, 
LiveCycle Forms captures the PDF data and returns it back out without performing any calculations. You 
set the submit type in LiveCycle Designer. For information, see the LiveCycle Designer Help. 

The content type of submitted PDF data is application/pdf. In contrast, the content type of submitted 
XML data is text/xml. You can transfer submitted PDF data to other LiveCycle products. For information, 
see “Transferring PDF Data” on page 103.

The following table summarizes the interaction among a client device (such as a web browser), a client 
application, and LiveCycle Forms when a user clicks a button that initiates a submit operation.

User actions Client application actions LiveCycle Forms actions

A user enters data into form 
fields and clicks a submit 
button. This initiates a submit 
operation.

Client validations marked run 
on client are executed.

Browser performs an HTTP post 
to the target URL (this value is 
defined either in LiveCycle 
Designer or by the 
renderForm method’s 
sTargetURL parameter).



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     24

Creates an object that inherits 
from the IFormServer interface 
(for example, an EJBClient 
object) and calls the 
processFormSubmission 
method. For information, see 
“Retrieving submitted form data” 
on page 60.

LiveCycle Forms merges posted 
data back into the form. (if 
applicable). 

Executes the field click event.

Executes the form-wide field 
calculate events.

Executes the form-wide page 
calculate events.

Executes the form-wide field 
validation events.

Executes the page validation events 
(which include validate, 
formatTest, and nullTest). 

Executes the Form Close event. 

If this validation process fails, it 
indicates that at least one error 
exists. The returned FSAction 
code is set to FSValidate. For 
information, see “Retrieving 
submitted form data” on page 60.

Verifies that LiveCycle Forms 
returned an FSAction code of 
FSValidate. In this situation, 
the result is sent back to the client 
browser so that the user can 
correct the mistake. 

Performs a binary write operation 
to the browser with the form.

User actions Client application actions LiveCycle Forms actions



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     25

For forms that are displayed as 
HTML, the end user sees the 
form containing the same data, 
calculations, and list of errors to 
correct before resubmitting.

For forms that are displayed as 
PDF, a user interface is not 
defined. Validation errors can 
be retrieved by using the 
OutputContext interface’s 
getValidation
ErrorsList method.

If this validation process succeeds, 
the returned FSAction code is set 
to FSSubmit.

Verifies that LiveCycle Forms 
returns an FSAction value of 
FSSubmit (0). 

Acknowledges that all form 
processing is complete and that 
LiveCycle Forms has returned 
XML data. For information about 
retrieving the XML data, see 
“Creating application logic to 
retrieve submitted data” on 
page 62.

Any additional processing is 
application specific. For example, 
a wizard-style application can 
request the next form panel, do 
additional data investigations, 
update the database, or initiate a 
new workflow process.

The view is application specific. 
For example, a new form can be 
displayed.

User actions Client application actions LiveCycle Forms actions



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     26

Calculate button

A button can make a request to LiveCycle Forms to execute a calculation operation. When a user clicks a 
button, a ProcessHTTPRequest call is issued to LiveCycle Forms. Then LiveCycle Forms executes the 
calculation operation and returns calculation results within the form. For information, see “Calculating 
Form Data” on page 95.

The following table summarizes the interaction among a client device (such as a web browser), a client 
application, and LiveCycle Forms when a user clicks a button that initiates a calculation operation.

User actions Client application actions LiveCycle Forms actions

A user clicks a button that is 
located on a form.

If the button’s Click event is 
marked run on client, the form 
is not submitted to LiveCycle 
Forms. The script is executed in 
a web browser, Acrobat, or 
Adobe Reader.

If the button’s Click event is 
marked run on server, the form 
is submitted to LiveCycle 
Forms.

Creates an object that inherits 
from the IFormServer interface 
(for example, an EJBClient 
object) and calls the 
processFormSubmission 
method. 

For information, see “Handling a 
form containing a script” on 
page 96.

LiveCycle Forms merges new data 
into the form design (if applicable). 

Executes the field click event.

Executes the form-wide field 
calculate events.

Executes the form-wide page 
calculate events.

Executes a page enter or exit event.

Executes the form-wide field 
validation events.



Adobe LiveCycle Forms Introduction
Developing Custom Applications  Requesting a form     27

Executes the page validation event.

Executes the page exit event 

Returns the form to the client 
application that invoked LiveCycle 
Forms. The form’s format does not 
change. If the form is submitted in 
PDF, it is sent back to the client 
browser in PDF.

Sets the value of FSAction to 
calculate (1). You can retrieve this 
value by calling the 
IOutputContent interface’s 
getFSAction method.

Verifies that LiveCycle Forms did 
not return an error.

Creates a binary stream and sends 
it to the client web browser.

Views calculation results that 
are displayed in the form.

User actions Client application actions LiveCycle Forms actions



     28

2 Invoking LiveCycle Forms

Creating client applications that interact with LiveCycle Forms requires invoking modules by using 
different APIs. Each API lets you invoke a different LiveCycle Forms module. For example, you can create an 
application that renders a form that is displayed in PDF to a client web browser by invoking the Form 
Server Module.

The LiveCycle Forms APIs are implemented in Java and have public methods that enable you to invoke 
LiveCycle Forms services installed on a J2EE application server. As a result, you need to use a Java 
development environment to create applications. The only exception is a managed client assembly for 
Microsoft .NET. Using this client assembly, you can create client applications in the Microsoft Visual Studio 
.NET 2003 development environment that interact with the Form Server Module. The Form Server Module 
API is the only API that has a Microsoft .NET client assembly.

This chapter contains the following information.

Including LiveCycle Forms library files
You need to include the following JAR files in your Java project to successfully invoke LiveCycle Forms:

formserver-client.jar: This JAR file that contains the Form Server Module API and must be used when 
invoking the Form Server Module. 

adobe-common.jar: This file is necessary to reference in your application’s class path when you are 
using the Form Server Module API. For example, this JAR file contains the 
com.adobe.idp.Document class, which the Form Server Module API methods use. For information, 
see “Working with the Document object” on page 43.

AdobeCSAUtils.jar: This file is necessary to use the Form Server Module.

datamanager-client.jar: This file lets you invoke the Data Manager Module using the Data Manager 
Module API and has to be referenced in your application’s class path. 

DocumentServicesLibrary.jar: This file is necessary to use the Data Manager Module API. For 
example, this JAR file defines com.adobe.service.ConnectionFactory. 

um-client.jar: This file must be referenced in your application’s class path to authenticate users with 
User Manager. For information, see “Authenticating Users” on page 110. 

Topic Description See

Including LiveCycle Forms 
library files

Describes how the different API modules are packaged. page 28

Invoking the Form Server 
Module

Describes how to create Form Server Module API objects, 
which are necessary to invoke the Form Server Module. 

page 30

Invoking the Data Manager 
Module

Describes how to create Data Manager Module API objects, 
which are necessary to invoke the Data Manager service. 

page 40

Invoking the XML Form 
Module

Describes how to create XML Form Module API objects, 
which are necessary to invoke the XML Form Module.

page 45



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Including LiveCycle Forms library files     29

xmlform-client.jar: This file lets you invoke the XML Form Module using the XML Form Module API. 
You do not have to include this JAR file unless you want to invoke the XML Form Module. 

axis.jar: This file must be referenced in your application’s class path to invoke LiveCycle Forms using 
SOAP. 

commons-discovery.jar: This file must be referenced in your application’s class path to invoke 
LiveCycle Forms using SOAP.

commons-logging.jar: This file must be referenced in your application’s class path to invoke LiveCycle 
Forms using SOAP.

saaj.jar: This file must be referenced in your application’s class path to invoke LiveCycle Forms using 
SOAP.

log4j-1.2.8.jar: This file must be referenced in your application’s class path to invoke LiveCycle Forms 
using SOAP (or the appropriate JAR file for your specific logging implementation)

jaxrpc.jar: This file must be referenced in your application’s class path to invoke LiveCycle Forms using 
SOAP.

j2ee.jar: This file must be referenced in your application’s class path to invoke LiveCycle Forms using 
SOAP and if you are outside of a J2EE application server. 

Obtaining Axis library files

You need to obtain the JAR files specified in this section in order to invoke LiveCycle Forms using SOAP 
(that is, using the SOAPClient class). You can obtain the latest JAR files from the 
http://ws.apache.org/axis/java/install.html website.

Upgrading LiveCycle Forms JAR files

When upgrading from a previous version of LiveCycle Forms to LiveCycle Forms 7.2, it is strongly 
recommended that you update the JAR files in your client application. You also may have to modify your 
application logic if you are currently passing null to the renderForm method’s cData parameter. For 
information, see “Passing a zero-length byte array” on page 53.

The following table lists the installation location of JAR files that are installed with LiveCycle Forms. The 
JAR files not listed, such as axis.jar, are in the install directory of the J2EE application server on which 
LiveCycle Forms is deployed.

File Location

formserver-client.jar ● C:\Adobe\LiveCycle\components\forms\common\lib\adobe (Microsoft 
Windows®)

● /opt/adobe/livecycle/components/forms/common/lib/adobe (UNIX®)

adobe-common.jar ● C:\Adobe\LiveCycle\components\csa\common\lib\adobe (Windows)

● /opt/adobe/livecycle/components/csa/common/lib/adobe (UNIX)

AdobeCSAUtils.jar ● C:\Adobe\LiveCycle\components\csa\<app_server>\lib\adobe (Windows)

● /opt/adobe/livecycle/components/csa/<app_server>/lib/adobe (UNIX)

datamanager-client.jar ● C:\Adobe\LiveCycle\components\csa\common\lib\adobe (Windows)

● /opt/adobe/livecycle/components/csa/common/lib/adobe (UNIX)

http://ws.apache.org/axis/java/install.html


Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking the Form Server Module     30

Note: C:\ or /opt is the drive on which LiveCycle Forms is installed. For information about installing 
LiveCycle Forms, see the Installing and Configuring guide for your application server.

Invoking services

After you add the library files to your Java project, you can invoke LiveCycle Forms by creating the objects 
specified in this table.

Note: The remaining sections explain how to invoke each module.

Invoking the Form Server Module
The Form Server Module API consists of two Java classes that you can use to instantiate objects used to 
invoke the Form Server Module. The first client class is named EJBClient and enables you to create client 
applications, such as Java servlets, within the J2EE development environment. The second class is named 
SOAPClient and enables you to create client applications that use SOAP to invoke the Form Server 
Module.

Both the EJBClient class and SOAPClient class inherit from the IFormServer interface. As a result, 
both classes support rendering forms displayed as either PDF or HTML to a client web browser. For 
information, see “Rendering Interactive Forms as PDF” on page 48. 

Both classes also support handling submitted forms. For information, see “Retrieving submitted form 
data” on page 60. 

DocumentServices
Library.jar

● C:\Adobe\LiveCycle\components\csa\<app_server>\lib\adobe (Windows)

● /opt/adobe/livecycle/components/csa/<app_server>/lib/adobe (UNIX)

um-client.jar ● C:\Adobe\LiveCycle\components\um\<app_server>\lib\adobe (Window)

● /opt/adobe/livecycle/components/um/<app_server>/lib/adobe (UNIX)

xmlform-client.jar ● C:\Adobe\LiveCycle\components\xmlform\common\lib\adobe (Windows)

● /opt/adobe/livecycle/components/xmlform/common/lib/adobe (UNIX)

File Location

Module  API Invoking object See

Form Server Module Form Server Module API ● EJBClient

● SOAPClient

page 30 

page 34 

Data Manager Data Manager Module API ● DataManager

● Document

● FileDataBuffer

page 40 

XML Form XML Form Module API ● Form page 45 



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Locally invoking Form Server Module     31

You can invoke the Form Server Module by using one of these methods:

● Locally using an EJBClient object

● Remotely using an EJBClient object

● Using a SOAPClient object

● Using the Microsoft .NET client assembly

● Using the FormServerFactory class

Note: All of these methods create either an EJBClient or a SOAPClient object, both of which are 
implementations of the IFormServer interface.

Locally invoking Form Server Module

You can locally invoke the Form Server Module using the EJBClient class. In this situation, the client 
application that contains the invoking EJBClient object is located on the same J2EE application server 
hosting Form Server Module.

Invoking the Form Server Module locally by using the EJBClient class is a three-step process:

1. Add the necessary JAR files to your Java project’s build path. For information, see “Including LiveCycle 
Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.formServer.client.EJBClient;
import com.adobe.formServer.interfaces.*;

3. Use the EJBClient constructor to create an EJBClient object:

EJBClient formServer = new EJBClient();

After you create an EJBClient object, you can perform tasks such as rendering a form. For information, 
see “Rendering a form using an EJBClient object” on page 52.

Note: Throughout this guide, the Form Server Module is invoked locally.

An instance of a J2EE application 
server hosting both LiveCycle Forms

and a custom application that
 interacts with Form Server Module

Web Server
(HTTP Server)

Enterprise Boundary

Corporate
Firewall

HTTP Request

HTTP Response



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Remotely invoking Form Server Module     32

Remotely invoking Form Server Module

You can remotely invoke the Form Server Module using an EJBClient object. In this situation, the client 
application that contains the invoking EJBClient object and the Form Server Module are located on 
separate J2EE application servers.

The Form Server Module API is the only LiveCycle Forms API that can be used in a client application that is 
located on a separate J2EE application server. If you deploy your client application to a separate 
application server, then you cannot use the XML Form Module API or the Data Manager API. To use these 
APIs, you must deploy your client application to the J2EE application server on which LiveCycle Forms is 
deployed. 

Caution: Remotely invoking the Form Server Module may not have the same performance as locally 
invoking the Form Server Module. 

Creating application logic to remotely invoke Form Server Module

Invoking the Form Server Module remotely by using an EJBClient object involves performing a Java 
Naming and Directory Interface (JNDI) look-up operation. The J2EE application servers on which the client 
application and the Form Server Module are deployed must be the same and support a JNDI look-up 
operation.

The client application performs a JNDI look-up on the J2EE application server to get an EJB reference to 
the Form Server Module. To perform a JNDI look-up, a client application needs to pass the following 
information to the initial context: 

● A provider URL 

● Server-specific naming context factory 

An instance of a J2EE application 
server hosting a custom

 application that interacts
with Form Server Module

An instance of the same 
 J2EE application server

 hosting LiveCycle Forms

Web Server
(HTTP Server)

Enterprise Boundary

Corporate
Firewall

HTTP Request

HTTP Response



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Remotely invoking Form Server Module     33

You can pass this information in two different ways:

● Create a JNDI properties file that specifies a provider URL and a naming context factory. Create the 
client application to read the information and programmatically create a Java InitialContext 
object. You set this information during the initial context look-up. 

● Create a jndi.properties file in the client application’s class path. When the client application creates a 
Java InitialContext object, it automatically gets the values located in the jndi.properties file. 

WebSphere

The following example shows the contents of a jndi.properties file that is used to invoke the Form Server 
Module that is deployed on WebSphere. 

java.naming.factory.initial=com.ibm.websphere.naming.
WsnInitialContextFactory
java.naming.provider.url=iiop://<AppServer>:<AppPort>

JBoss

The following example shows the contents of a jndi.properties file that is used to invoke the Form Server 
Module that is deployed on JBoss.

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=<AppServer>:<AppPort>
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

WebLogic

The following example shows the contents of a jndi.properties file used to invoke the Form Server Module 
that is deployed on WebLogic.

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://<AppServer>:<AppPort>

Invoking the Form Server Module

Invoking the Form Server Module remotely is a seven-step process:

1. Add the necessary JAR files to your Java project’s build path. For information, see “Including LiveCycle 
Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.formServer.client.EJBClient;
import com.adobe.formServer.interfaces.*;

3. Use the EJBClient constructor to create an EJBClient object.

4. Create a java.util.Hashtable object to store JNDI environment values. 

5. Populate the java.util.Hashtable object with JNDI environment name-value pairs by calling its 
put method (an example of this step is shown in the code listing that follows this list). Among the 
values that you must specify is the URL of the J2EE application server hosting LiveCycle Forms. 



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking Form Server Module using SOAP     34

6. Create a javax.naming.InitialContext object by using its constructor and pass the 
java.util.Hashtable object.

7. Call the EJBClient object’s setInitialContext method and pass the 
javax.naming.InitialContext object. 

The following code example shows the application logic to remotely invoke the Form Server Module. Both 
the client application and the Form Server Module are running on their own instances of JBoss.

Example 2.1 Remotely invoking Form Server Module using the EJBClient object

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Create a Hashtable object
Hashtable propsJNDI = new Hashtable();

//Populate the Hashtable object with JNDI environment values
propsJNDI.put("java.naming.factory.initial","org.jnp.interfaces.Naming
ContextFactory");
propsJNDI.put("java.naming.provider.url","jnp://myJBossServer:1099");
propsJNDI.put("java.naming.factory.url.pkgs","org.jboss.naming:org.jnp.
interfaces");

try {
//Create an InitialContext object
InitialContext initialContextOb = new InitialContext(propsJNDI);

//Call the EJBClient object’s setInitialContext object
formServer.setInitialContext(initialContextOb);

}

//Catch an exception
catch (Exception ex)
{

System.out.println("LiveCycle Forms exception is "+ ex.getMessage());
}

Invoking Form Server Module using SOAP 

You can remotely invoke the Form Server Module using a SOAPClient object. The client application that 
contains the invoking SOAPClient object is usually installed on a separate J2EE application server from 
the J2EE application server hosting the Form Server Module.



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking Form Server Module using SOAP     35

The two J2EE application servers do not have to be the same and can also be running on different 
operating systems. For example, the J2EE application server hosting the client application may be running 
on Windows, and the J2EE application server hosting the Form Server Module may be running on UNIX.

SOAP works through firewalls and can be load balanced using HTTP load-balancing tools. In addition, you 
can also use the SOAPClient object to locally invoke the Form Server Module.

Creating application logic to remotely invoke the Form Server Module

You instantiate the SOAPClient class to invoke the Form Server Module. Set the SOAP endpoint by 
invoking the SOAPClient object’s setSoapEndPoint method and passing a valid SOAP endpoint as an 
argument. The following table specifies valid SOAP endpoints for specific J2EE application servers. 

AppServerURL represents the host name of the computer on which LiveCycle Forms is deployed. 

Invoking the Form Server Module by using the SOAPClient class is a four-step process:

1. Add the necessary JAR files to your Java project’s build path. For information, see “Including LiveCycle 
Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.formServer.client.SOAPClient;
import com.adobe.formServer.interfaces.*;

3. Use the SOAPClient constructor to create a SOAPClient object:

SOAPClient formServer = new SOAPClient();

An instance of a 
J2EE application server

deployed on Windows and 
hosting a custom  

 application that interacts 
with Form Server Module

An instance of a separate J2EE 
application server deployed

on UNIX and hosting 
LiveCycle Forms

Web Server
(HTTP Server)

Enterprise Boundary

Corporate
Firewall

SOAP Request

SOAP Response

HTTP Request

HTTP Response

J2EE application server SOAP endpoint

JBoss http://<AppServerURL>:8080/jboss_net/services/AdobeFSService

WebLogic http://<AppServerURL>:7001/FormServerWS/services/AdobeFSService

WebSphere http://<AppServer>:9080/FormServerWS/services/AdobeFSService



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking Form Server Module using the Microsoft .NET client assembly     36

4. Set the SOAPClient object’s endpoint by calling the setSoapEndPoint method. This method 
specifies the location of the J2EE application server that hosts LiveCycle Forms.

The following code example shows the application logic to remotely invoke the Form Server Module by 
using a SOAPClient object.

Example 2.2 Remotely invoking Form Server Module using the SOAPClient class

//Create a SOAPClient object
SOAPClient formServer = new SOAPClient();

 
//Set the SOAPClient object’s SOAP end point
formServer.setSoapEndPoint("http://<AppServerURL>:8080/jboss_net/services/
AdobeFSService");

Note: After you create a SOAPClient object, you can perform tasks such as rendering a form to a client 
web browser. For information, see “Rendering a Form using a SOAPClient object” on page 58.

Invoking Form Server Module using the Microsoft .NET client assembly 

You use the Microsoft .NET client assembly to create client applications in the Microsoft .NET development 
environment. This client assembly consists of a file named SoapClient.dll and is located in the LiveCycle 
Forms library directory. For information about this directory, see “Including LiveCycle Forms library files” 
on page 28.

The Microsoft .NET client assembly contains two main classes that enable you to create client applications 
in the Microsoft .NET development environment. The first class is FSSoapClient and is equivalent to the 
SOAPClient class used in the Java implementation. The second class is named IOutputContent and is 
equivalent to the IOutputContext interface used in the Java implementation. 

The client application that contains the Microsoft .NET client assembly must reside on an application 
server that has the Microsoft .NET run-time installed. LiveCycle Forms is installed on a J2EE application 
server.

A web Server (HTTP Server)
that has the Microsoft

.NET run-time installed and 
hosts a custom application

that interacts with the Form
Server Module

HTTP Request

HTTP Response

Enterprise Boundary

Corporate
Firewall

An instance of a J2EE 
application server hosting 

LiveCycle Forms

SOAP Request

SOAP Response



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking Form Server Module using the Microsoft .NET client assembly     37

Creating application logic to invoke the Form Server Module

Invoking the Form Server Module by using the Microsoft .NET client assembly is a four-step process:

1. From the Microsoft .NET Visual Studio development environment, reference the SoapClient.dll file. 

2. Add the following import statement to your Microsoft .NET project:

using SoapClient ; // C# syntax
imports SoapClient ' VB.NET syntax

3. Use the FSSoapClient constructor to create a FSSoapClient object:

FSSoapClient formServer = new FSSoapClient(); // C# syntax
Dim formServer As New FSSoapClient ' VB.NET syntax

4. Set the SOAPClient object’s SOAP endpoint by calling the setSoapEndPoint method: 

formServer.setSoapEndPoint("http://<AppServer>:<AppPort>/FormServerWS/
services/AdobeFSService"); //C# syntax
formServer.setSoapEndPoint("http://<AppServer>:<AppPort>/FormServerWS/
services/AdobeFSService") ' VB.NET syntax

Note: After you create a FSSoapClient object, you can perform tasks such as rendering a form. For 
information, see “Rendering Forms from .NET” on page 114.

Referencing the Microsoft .NET client assembly 

You create a reference to the SoapClient.dll assembly within the Microsoft .NET Visual Studio development 
environment. Before doing so, ensure that LiveCycle Forms is installed on your development computer.

Getting the ICSharp utility 

The Form Server SOAP client is dependent on an ICSharp utility, which consists of a single file named 
ICSharpCode.SharpZipLib.dll. You must reference this file from your Microsoft .NET Visual Studio project. 
You can download this utility from the following website: 
http://prdownloads.sourceforge.net/sharpdevelop/050SharpZipLib.zip?download.

➤ To reference the LiveCycle Forms SOAP client within Microsoft .NET Visual Studio

1. From the Project menu, click Add Reference.

2. Click the .NET tab.

3. Click Search and navigate to the LiveCycle Forms library directory located at 
C:\Adobe\LiveCycle\components\forms\common\lib\adobe.

4. Select SoapClient.dll.

http://prdownloads.sourceforge.net/sharpdevelop/050SharpZipLib.zip?download


Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Creating Form Server Module objects using the FormServerFactory class     38

Creating Form Server Module objects using the FormServerFactory class

You can use the FormServerFactory class to invoke the Form Server Module. This class has a static 
method named create that returns an IFormServer interface that is based on a SOAPClient object 
or an EJBClient object. You pass a java.util.Properties object to the create method as an 
argument. You must invoke the create method within a try statement. 

Using the java.util.Properties object’s setProperty method, specify a value for the following 
properties:

● FormServerFactory.CLASSNAME_PROP—Specifies whether to create a SOAPClient or an 
EJBClient object. 

● FormServerFactory.INITIALCONTEXT_PROP—Specifies the EJBClient object’s initial context. 
You can specify the name of the javax.naming.InitialContext object. This property is set only if 
you are remotely invoking the Form Server Module. For information, see “Creating an EJBClient object 
to remotely invoke Form Server Module” on page 39.

● FormServerFactory.ENDPOINT_PROP—Specifies the SOAP endpoint. This property is set only if 
you are creating a SOAPClient object. For information, see “Invoking Form Server Module using 
SOAP” on page 34.

The difference between using a new operator to instantiate a SOAPClient or EJBClient object (as 
shown throughout this chapter) or using the FormServerFactory class is a matter of which Java syntax 
you prefer using. There is no performance advantage in using one method over the other.

Note: It is possible to omit specifying a CLASSNAME_PROP value. By default, the create method returns 
an EJBClient object. If you specify an ENDPOINT_PROP value, the create returns a 
SOAPClient object. If you specify an INITIALCONTEXT_PROP value, the create method returns 
an EJBClient object. 

Creating a SOAPClient object using the FormServerFactory class

The following code example creates a SOAPClient object by using the FormServerFactory class. 

Example 2.3 Creating a SOAPClient object using the FormServerFactory class

//Create an IFormServer interface based on an EJBClient object
Properties props = new Properties();

//Define the properties
props.setProperty(FormServerFactory.CLASSNAME_PROP, 
"com.adobe.formServer.client.SOAPClient");
props.setProperty(FormServerFactory.ENDPOINT_PROP, 
"http://<AppServerURL>:8080/jboss_net/services/AdobeFSService");

try{
//Call create
IFormServer formServer = FormServerFactory.create(props);
}

  
//Catch an exception
catch (Exception ex)
{

System.out.println("LiveCycle Forms exception is "+ ex.getMessage());
}



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Creating Form Server Module objects using the FormServerFactory class     39

Creating an EJBClient object to locally invoke Form Server Module

The following code example creates an EJBClient object by using the FormServerFactory class. This 
object is used to locally invoke the Form Server Module because the 
FormServerFactory.INITIALCONTEXT_PROP property is not defined. Notice that the return value is 
cast to EJBClient. 

Example 2.4 Creating a local EJBClient object using the FormServerFactory class

// Create an EJBClient object
Properties props = new Properties ();

//Define the properties
props.setProperty(FormServerFactory.CLASSNAME_PROP, 
"com.adobe.formServer.client.EJBClient");

try
{
 //Call create
 IFormServer formServer = FormServerFactory.create(props);
}

//Catch an exception
catch (Exception ex)
{

System.out.println("LiveCycle Forms exception is "+ ex.getMessage());
}

Creating an EJBClient object to remotely invoke Form Server Module

To remotely invoke LiveCycle Forms by using EJB, create an EJBClient object by invoking the 
FormServerFactory object’s create method. 

Before you invoke the create method, you must specify JNDI environment values to enable your client 
application to perform a Java look-up operation. The J2EE application servers on which the client 
application and LiveCycle Forms are deployed must be the same and must support a JNDI look-up 
operation.

Create a java.util.Hashtable object that is used to store the JNDI environment values. You must 
ensure that you use JNDI environment values that are compatible with the J2EE application server on 
which LiveCycle Forms is deployed. For example, assuming that LiveCycle Forms is deployed on JBoss, you 
can use the following JNDI environment values:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://<AppServer>:<AppPort>
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

After you populate a java.util.Hashtable object with JNDI environment values, create a 
javax.naming.InitialContext object by using its constructor and pass the 
java.util.Hashtable object that stores the JNDI environment values. 

Next, create a java.util.Properties object by using its constructor. Invoke the 
java.util.Properties object’s put method and pass the following arguments:

● FormServerFactory.INITCONTEXT_PROP static property 

● javax.naming.InitialContext object



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking the Data Manager Module     40

You can omit the FormServerFactory object’s CLASSNAME_PROP property. By default, the create 
method returns an EJBClient object. 

Invoke the FormServerFactory object’s static create method and pass the 
java.util.Properties object. This method returns an EJBClient object that is used to remotely 
invoke LiveCycle Forms. The following code example shows how to create an EJBClient object to 
remotely invoke LiveCycle Forms (this instance of LiveCycle Forms is deployed on JBoss). 

Example 2.5 Creating a remote EJBClient object using the FormServerFactory class

// Create a Hashtable object
Hashtable propsJNDI = new Hashtable();

// Populate the Hashtable object with JNDI environment values
propsJNDI.put("java.naming.factory.initial","org.jnp.interfaces.
NamingContextFactory");
propsJNDI.put("java.naming.provider.url","jnp://myJBossServer:1099");
propsJNDI.put("java.naming.factory.url.pkgs","org.jboss.naming:org.jnp.
interfaces");

  
try{

//Create an InitialContext object
InitialContext initialContextOb = new InitialContext(propsJNDI);

//Create an Properties object 
Properties props = new Properties ();

//Define the properties
props.put(FormServerFactory.INITCONTEXT_PROP, initialContextOb);

//Call create to create an EJBClient object
IFormServer formServer = FormServerFactory.create(props);

}

catch (Exception ex)
{

System.out.println(ex.getMessage()); 
}

Note: To use the FormServerFactory class in your Java project, add the following import statement: 
import com.adobe.formServer.client.FormServerFactory.

Invoking the Data Manager Module
You must create a DataManager object before you can create applications using the XML Form Module 
API. This API is dependent on the Data Manager Module API. The Data Manager Module API does not have 
a constructor that lets you instantiate a DataManager object. Instead, you create this object by 
performing a Java JNDI look-up by using the Connection API.

The Connection API lets you create a connection to the Data Manager service running on a J2EE 
application server. This API consists of a single class named ConnectionFactory. For information about 
the Data Manager Module API or the Connection API, see the XML Form Module API Reference.



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Creating a DataManager object     41

In addition to using the Connection API, you also use two Java classes, 
javax.naming.InitialContext and javax.rmi.PortableRemoteObject, to perform a Java 
JNDI look-up. Using these classes, you create a CORBA object representing a connection to the Data 
Manager service.

The Data Manager Module API is a transaction-based API, which means that a DataManager object must 
be created within a transaction. Using the javax.transaction.UserTransaction interface, you 
start a transaction by invoking its begin method and complete the transaction by invoking its commit 
method.

Note: A client application that uses the Data Manager Module API must be deployed to the J2EE 
application server hosting LiveCycle Forms. You cannot remotely invoke the Data Manager service. 

Creating a DataManager object

You create a DataManager object by performing the following programmatic tasks within a Java project:

1. Add the necessary JAR files to your Java project’s build path. For information, see “Including LiveCycle 
Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.service.DataManager;          //Data Manager Module API
import com.adobe.service.DataManagerHelper;   //Data Manager Module API
import com.adobe.service.ConnectionFactory;   //Connection API
import javax.naming.InitialContext;            //InitialContext class
import javax.rmi.PortableRemoteObject;        //PortableRemoteObject
import javax.transaction.UserTransaction;  //UserTransaction class

3. Create an javax.naming.InitialContext object by using the InitialContext constructor:

InitialContext namingContext = new InitialContext();

4. Perform a JNDI look-up by invoking the javax.naming.InitialContext object’s lookup method 
and pass the string DataManagerService as an argument. Store the return value in an Object 
variable. The following line of code shows this application logic:

Object dmObject = namingContext.lookup("DataManagerService");

5. Create a ConnectionFactory object by invoking the javax.rmi.PortableRemoteObject 
object’s narrow method. This method determines if the return value of the lookup method can be 
cast to a ConnectionFactory object. Cast the return value to ConnectionFactory. The following 
line of code shows this application logic:

ConnectionFactory dmConnectionFactory = (ConnectionFactory)
PortableRemoteObject.narrow(dmObject,ConnectionFactory.class);

6. Create a javax.transaction.UserTransaction object and invoke its begin method. To create 
this object, invoke the javax.naming.InitialContext object’s lookup method and pass the 
string java:comp/UserTransaction as an argument. Cast the return value to UserTransaction. 
The following lines of code show this application logic:

UserTransaction transaction = (UserTransaction)
namingContext.lookup("java:comp/UserTransaction");

transaction.begin();



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Using the DMUtils object     42

7. Create a DataManager object by calling the DataManagerHelper object’s narrow method (it is 
unnecessary to instantiate a DataManagerHelper object). Pass the ConnectionFactory object to 
this method and call its getConnection method. Cast the return value to 
org.omg.CORBA.Object. The following line of code shows this application logic:

DataManager mDataManager =
DataManagerHelper.narrow((org.omg.CORBA.Object)dmConnectionFactory.
getConnection());

The following example creates a DataManager object.

Example 2.6 Creating a DataManager object

//Declare a ConnectionFactory object
ConnectionFactory dmConnectionFactory = null;

//Create an InitialContext object
InitialContext namingContext = new InitialContext();

// Lookup the Data Manager service
Object dmObject = namingContext.lookup("DataManagerService");
dmConnectionFactory = (ConnectionFactory)

PortableRemoteObject.narrow(dmObject,ConnectionFactory.class);

//Begin a transaction
UserTransaction transaction = (UserTransaction)

namingContext.lookup("java:comp/UserTransaction");
transaction.begin();

//Create a DataManager object
DataManager mDataManager =

DataManagerHelper.narrow((org.omg.CORBA.Object)dmConnectionFactory.
getConnection());

//Perform tasks using the DataManager object

//Complete the transaction
transaction.commit();

Note: If you create a DataManager object outside of a transaction, a Java exception occurs.

Using the DMUtils object

The DMUtils object enables you to perform programmatic tasks involving data sets, such as reading a 
data input stream into a temporary file and placing the file into a DataBuffer object. All DMUtils 
methods are static. 

Before you can use the DMUtils object, perform tasks required to create a DataManager object, such as 
adding the Data Manager Jar files to your Java build path and including the necessary import statements. 
Then, include the following import statement in your Java project:

import com.adobe.util.DMUtils;

After you perform these tasks, you can use the DMUtils object in your Java project. For information about 
the DMUtils class, see the API Reference.



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Working with the Document object     43

Working with the Document object

A Document object enables you to pass data between different LiveCycle services and components, and 
supports remote RMI calls. This object belongs to the com.adobe.idp package and is part of the Data 
Manager Module API. The following two Form Server Module API methods accept a Document object as 
an argument:

● renderForm

● ProcessFormSubmission

You can, for example, pass a Document object to the renderForm method that results in the data that is 
stored in the Document object being merged with the form. Also, the IOutputContext interface that 
belongs to the Form Server Module API has a method named saveOutputContent that returns a 
Document object.

The following list describes the main features of the Document class:

● The Document object’s content is defined by using java.io.InputStream, 
com.adobe.service.DataBuffer, a byte array, a file, or any in-memory object that provides read 
and write methods. 

● The Document object is a Java serializable type; therefore, it can be passed over an RMI call (as 
opposed to java.io.InputStream).

● Data is either stored in memory as part of the Document object or saved as a file on a disk.

● The Document object is cached in memory for the duration of the current J2EE transaction. Therefore, 
if both the sender and the receiver of the Document share the same J2EE transaction, the in-memory 
object is passed directly with no extra serialization. 

● Any temporary storage resources occupied by the Document object’s content are removed 
automatically upon the Document disposal. 

This section discusses how to create a Document object and the tasks you can perform by using a 
Document object. 

Creating a Document object using a remote file

You can create a Document object that is based in a file located on a remote computer. For example, 
assume that you want to prepopulate a form with data located within an XML file. Next, assume that the 
XML file is located on a remote server. You create a Document object that is based on the remote XML file 
by using the Document constructor that accepts a java.net.URL object. For information about 
prepopulating a form, see “Rendering prepopulated forms” on page 68. 

The following code example creates a Document object that is based on a remote XML file.

Example 2.7 Creating a Document object using a remote file

//Create an URL object
URL myURL = new URL("http://<AppServer>:<AppPort>/DataFile/GetForms.xml");

//Create a Document object
Document myRemoteDocument = new Document(myURL);

Note: To create a Document object, you must specify the following import statement in your Java project 
import com.adobe.idp.Document.



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Working with the Document object     44

Creating a Document object using a data stream

You can create a Document object that is based on a data stream, such as a byte array that is obtained by 
invoking a java.io.InputStream object’s read method. The following code example creates a 
Document object by using a Document constructor that accepts a byte array (for the purpose of this code 
example, assume that a java.io.InputStream object named myInputStream exists). 

Example 2.8 Creating a Document object using a data stream

//Get the size of the InputStream buffer
int avail = myInputStream.available(); 

//Allocate the size of the InputStream to a byte array
byte[] myBytes = new byte[avail];

//Populate the byte array with the contents of the InputStream
myInputStream.read(myBytes); 

//Create a Document object using the byte array
Document myDataStreamDocument = new Document(myBytes) ;

Note: You can also create a Document object by passing a java.io.InputStream object to the 
Document constructor. 

Creating a Document object using a local file

You can create a Document object that is based on a local file by using the Document constructor that 
accepts a java.io.File object. When you create a Document object, it keeps a reference to the 
java.io.File object. The local file should remain available until the contents of the Document object is 
saved to a permanent storage.

A Document object’s contents can be saved to a permanent storage when the Document object’s 
passivate method is invoked or when the Document object’s content is read by invoking an access 
method such as getInputStream or getFile. 

The Document constructor that accepts a java.io.File object also requires a boolean value that 
specifies whether the Document object controls the file when the contents are saved to a permanent 
storage. 

The following code example creates a Document object that is based on a local file named FormData.xml. 
The boolean value is set to false, which means that the Document object does not control the file. 

Example 2.9 Creating a Document object using a local file

//Create a File object based on a local file named FormData.xml
File myFile = new File("C:\\FormData.xml"); 

//Create a Document object based on a local file
Document myLocalDocument = new Document(myFile,false);



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Invoking the XML Form service     45

Returning the content of a Document object to a file 

You can return the contents of a Document object to a file by invoking the Document object’s getFile 
method. The following code example returns the content of the Document object to a java.io.File 
object. 

Example 2.10 Returning the content of a Document object to a file

File docContentFile = myDocument.getFile();

Writing the content of a Document object to a data stream

You can write the contents of a Document object to a java.io.InputStream object by invoking the 
Document object’s getInputStream method. The following code example writes the content of the 
Document object to a java.io.InputStream object.

Example 2.11 Writing the content of a Document object to a data stream

InputStream myDataStream = myDoc.getInputStream();

Invoking the XML Form service
You use the XML Form Module API to create a Form object. Using this object, you can perform tasks such 
as rendering forms. For information, see “Rendering Forms using the XML Form Module API” on page 121.

Caution: The XML Form Module API is deprecated; it is recommended that you use the Form Server 
Module API. 

In addition to using the Connection API, you also use two standard Java classes, InitialContext and 
PortableRemoteObject, to perform a Java JNDI look-up. Using these classes, you create a CORBA 
object representing a connection to the XML Form service. 

The XML Form Module API is a transaction-based API, which means a Form object must be created within 
a transaction. Using the UserTransaction class, you can create a UserTransaction object. Call the 
UserTransaction object’s begin method to start the transaction and its commit method to complete 
the transaction.

Note: A client application that uses the XML Form Module API must be deployed to the J2EE application 
server hosting LiveCycle Forms. 

Creating a Form object

You create a Form object by performing the following programmatic tasks within a Java project:

1. Add the xmlform-client.jarfile to your Java project’s build path. For information about the location of 
this file, see “Including LiveCycle Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.document.xmlform.Form;
import com.adobe.document.xmlform.FormFactory;
import com.adobe.document.xmlform.FormFactoryHelper;



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Creating a Form object     46

3. Create a DataManager object (the import statements required to create this object are required to 
create a Form object). For information, see “Invoking the Data Manager Module” on page 40.

4. Create an InitialContext object by using the InitialContext constructor:

InitialContext xmlnamingContext = new InitialContext();

5. Perform a JNDI look-up by calling the InitialContext object’s lookup method and pass the string 
XMLFormService as an argument. Store the return value in an Object variable. The following line of 
code shows this application logic:

Object xmlObject = xmlnamingContext.lookup("XMLFormService");

6. Create a ConnectionFactory object by calling the PortableRemoteObject object’s narrow 
method. This method determines if the return value of the lookup method can be cast to a 
ConnectionFactory object. Cast the return value to ConnectionFactory. The following line of 
code shows this application logic:

ConnectionFactory xmlConnectionFactory = (ConnectionFactory)
PortableRemoteObject.narrow(xmlObject,ConnectionFactory.class);

7. Create a UserTransaction object and call its begin method. To create a UserTransaction 
object, call the InitialContext object’s lookup method and pass the string 
java:comp/UserTransaction as an argument. Cast the return value to UserTransaction. The 
following lines of code show this application logic:

UserTransaction transaction = (UserTransaction)
namingContext.lookup("java:comp/UserTransaction");

transaction.begin();

8. Create a FormFactory object by calling the FormFactoryHelper object’s narrow method (it is 
unnecessary to instantiate a FormFactoryHelper object). Pass the ConnectionFactory object to 
this method and call its getConnection method. Cast the return value to 
org.omg.CORBA.Object. The following line of code shows this application logic:

FormFactory mFormFactory =
FormFactoryHelper.narrow((org.omg.CORBA.Object)xmlConnection
Factory.getConnection());

9. Create a Form object by calling the FormFactory object’s createDefault method. This method 
creates a Form object by using default configuration values. The following line of code show this 
application logic:

Form myForm = mFormFactory.createDefault();



Adobe LiveCycle Forms Invoking LiveCycle Forms
Developing Custom Applications  Creating a Form object     47

The following code example shows how to create a Form object.

Example 2.12 Creating a Form object using createDefault

//Declare a ConnectionFactory object
ConnectionFactory xmlConnectionFactory = null;

// Lookup the XMLForm service
Object xmlObject = namingContext.lookup("XMLFormService");

//Create a ConnectionFactory object
xmlConnectionFactory = (ConnectionFactory) 
PortableRemoteObject.narrow(xmlObject,ConnectionFactory.class);

//Begin a transaction
UserTransaction transaction = (UserTransaction)

namingContext.lookup("java:comp/UserTransaction");
transaction.begin();

//Use the xmlConnectionFactory object to create a FormFactory object
FormFactory mFormFactory =

FormFactoryHelper.narrow((org.omg.CORBA.Object)xmlConnection
Factory.getConnection());

// Create a Form object by calling createDefault
Form myForm = mFormFactory.createDefault();

//Perform tasks using the Form object

//Complete the transaction
transaction.commit();

Note: This example shows calling the FormFactory object’s createDefault method to create a Form 
object that uses default configuration settings. For information about creating a Form object by 
calling the FormFactory object’s create method, setting configuration options, and then using 
the Form object to render a form, see “Rendering Forms using the XML Form Module API” on 
page 121.



     48

3 Rendering Interactive Forms as PDF

You use the Form Server Module API to develop client applications that interact with the Form Server 
Module. The Form Server Module renders forms, such as an interactive form, that are displayed as either 
PDF or HTML across the Internet or an intranet to client devices, typically web browsers. An interactive 
form contains one or more fields for collecting information interactively from a user. This chapter explains 
how to render interactive forms displayed as PDF. For information about rendering forms as HTML, see 
“Rendering Forms as HTML” on page 91.

A form is rendered in response to a request made by a client device. For example, a client application can 
instruct the Form Server Module to render a form in response to an HTTP request that is initialized from a 
client web browser. When the form is rendered back to the client web browser, the user can fill in the form 
and click a Submit button to send information back to the Form Server Module.

The code examples displayed in this chapter show how to locally invoke the Form Server Module using an 
EJBCLient object. There are other ways in which to invoke the Form Server Module. For information, see 
“Invoking the Form Server Module” on page 30.

This chapter contains the following information.

About rendering PDF forms
The Form Server Module is stateless and runs on a J2EE application server and is accessible through the 
Form Server Module API. A client application that uses the Form Server Module API is able to invoke the 
Form Server Module and instruct it to perform tasks such as rendering forms, processing submitted data, 
and prepopulating forms with data.

The Form Server Module sends forms across a network and renders them to client devices, such as web 
browsers. Although a form can be rendered on different types of client devices, the examples in this 
chapter assume that forms are rendered on web browsers.

A client application that uses the Form Server Module API is able to retrieve the data submitted with a 
form. For example, when a user fills in a form and submits it, a client application can retrieve the data that 

Topic Description See

About rendering PDF forms Describes the characteristics of a form-based application. page 48 

Rendering PDF forms Describes the methods you can use to render a form to a 
client web browser. 

page 52 

Retrieving submitted data Describes the methods you can use to retrieve data 
submitted from a form.

page 60 

Rendering prepopulated forms Describes the methods you can use to prepopulate a 
form prior to rendering it.

page 68 

Rendering a form at the client Describes how to render a form at the client. page 74

Passing a form design by value Describes how to pass a form design by value. page 77



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  About rendering PDF forms     49

the user entered in the form’s fields. The client application can then process the data in a variety of ways, 
such as performing calculations, storing it in an enterprise database, or sending it to another application, 
such as an application that authorizes credit cards.

The Form Server Module can prepopulate a form prior to rendering it. Prepopulating a form involves 
inserting data into a form. For example, a client application can query data from a database and instruct 
the Form Server Module to insert the data into a form and then render the form. Once the form is rendered 
to a client web browser, the user is able to view the data in the displayed form.

Using the Form Server Module API, you can create different types of client applications that interact with 
the Form Server Module, such as Java servlets or JSPs. This chapter discusses creating Java servlets that 
can be deployed on the J2EE application server on which the Form Server Module is deployed. For 
information about deploying the Form Server Module on a J2EE application server, see the Installing and 
Configuring guide for your application server.

Consider a client web browser sending an HTTP request to a client application requesting a form that is 
displayed as PDF. When the client application receives the HTTP request, it sends the request to the Form 
Server Module, which then renders the form to the client web browser within an HTTP response. Adobe 
Reader (or Acrobat) must be installed on the computer hosting the client web browser for a form that is 
displayed as PDF to be visible to a user, as shown in the following diagram.

Note: This diagram shows a Form Server Module API client application and the Form Server Module 
existing on the same J2EE application server. You can deploy a client application to a separate J2EE 
application server and remotely invoke the Form Server Module. For information, see “Remotely 
invoking Form Server Module” on page 32.

Sample loan application

A sample loan application is introduced to enhance your understanding of the Form Server Module. This 
application lets a user fill in a form with data required to secure a loan. After the user fills in the form, the 
data is submitted to the Form Server Module by clicking a Submit button. This sample application consists 
of the following components:

● An HTML page named StartLoan.html that functions as the application’s start page. This page invokes a 
Java servlet named GetLoanForm.

● A Java servlet named GetLoanForm (contains the Form Server Module API) that renders a loan form 
that is saved as Loan.xdp.

Form 

PDF



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  About rendering PDF forms     50

● A loan form that lets a user fill in data required to secure a loan. This form contains a Submit button that 
the user clicks to submit data to the HandleData Java servlet.

● A Java servlet named HandleData (contains the Form Server Module API) that retrieves the submitted 
data. 

● A confirmation form that displays a confirmation message. 

The following diagram shows the loan application’s logic flow.

The following table describes the steps in this diagram.

1 The GetLoanForm Java servlet is invoked from the StartLoan.html page. This page contains a link 
that invokes the GetLoanForm Java servlet.

2 The GetLoanForm Java servlet uses the Form Server Module API to render the loan form to the 
client web browser. For information, see “Rendering a form using an EJBClient object” on page 52.

3 After the user fills in the loan form and clicks the Submit button, data is submitted to the 
HandleData Java servlet. For information about the loan form, see “Loan form” on page 51.

4 The HandleData Java servlet uses the Form Server Module API to process the form submission 
and retrieve field data. The data is then stored in an enterprise database. For information, see 
“Retrieving submitted form data” on page 60.

5 A confirmation form is rendered back to the web browser. Data such as the user’s first and last 
name is merged with the form before it is rendered. For information about merging data with a 
form, see “Rendering prepopulated forms” on page 68.

Client Web Browser

GetLoanForm
(Java Servlet)

HandleData
(Java Servlet)3 4

2

1

Enterprise
Database

5

J2EE Application Server
(hosting LiveCycle Forms)



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  About rendering PDF forms     51

Loan form

This interactive loan form is rendered by the sample loan application’s GetLoanForm Java servlet:

Note: For information about an interactive form, see “Interactive forms” on page 13. 

Confirmation form

This static confirmation form is rendered by the sample loan application’s HandleData Java servlet:



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a form using an EJBClient object     52

The HandleData Java servlet prepopulates this form with the user’s first and last name as well as the 
amount. After the form is prepopulated, it is sent to the client web browser. For information, see 
“Rendering prepopulated forms” on page 68.

Note: For information about a static form, see “Static forms” on page 14.

Java servlets

The sample loan application is an example of a Form Server application that exists as Java servlets. A Java 
servlet is a Java program running on a J2EE application server, such as WebSphere, and contains Form 
Server Module API code.

The following code shows the syntax of a Java servlet named GetLoanForm:

public class GetLoanForm extends HttpServlet implements Servlet {
public void doGet(HttpServletRequest req, HttpServletResponse resp
throws ServletException, IOException {

}
public void doPost(HttpServletRequest req, HttpServletResponse resp
throws ServletException, IOException {

//Throughout this chapter Form Server code is placed here
}

Normally, you would not place Form Server Module API code within a Java servlet’s doGet or doPost 
methods. It is better programming practice to place Form Server Module API code within a separate class, 
instantiate the new class from within the doPost method (or doGet method), and call the appropriate 
methods. However, for code brevity, Form Server Module API code is placed in the doPost method.

Rendering a form using an EJBClient object 
Using the Form Server Module API, you create application logic to render a form that is displayed as PDF to 
a client web browser as part of an HTTP response. A form must be rendered before a user can interact with 
it. Consider the loan application described earlier in this chapter. Before a user can fill in the loan form, it 
must be rendered and displayed in a web browser. For information about this form, see “Loan form” on 
page 51.

To render a form, create an EJBClient object (or a SOAPClient object) and call its renderForm 
method. The renderForm method returns an IOutputContext interface. You use this interface to 
populate a data stream to send to the client web browser with the form.

Note: Before you render a form, it is recommended that you are familiar with invoking the Form Server 
Module. For information, see “Invoking the Form Server Module” on page 30.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Specifying the form design to render     53

Specifying the form design to render

You set the renderForm method’s sFormQuery parameter to specify the form design to render. Assign 
the file name of the form design to this parameter, as shown in the following example:

String sFormQuery = "Loan.xdp";

You set the renderForm method’s sContentRootURI parameter to specify the network location of the 
form design. Typically, this is a URI value, as shown in the following example:

String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";

AppServer represents the host name of the computer on which your client application is deployed. 
AppPort represents the port that the application uses. For example, an application running on the 
WebSphere J2EE application server uses port 9080. 

Note: In this code example, a form design is accessed using HTTP. However, a form can be referenced 
using a URI referencing a network path.

Passing a zero-length byte array

You must ensure that you do not pass a null value to the renderForm method’s cData parameter. 
When using 7.0 library files (or previous library files), you could pass null to this parameter. However, 
when using the Form Server Module 7.2 API, a com.adobe.idp.Document object can be passed to the 
cData parameter in addition to a byte array. As a result, a null value can no longer be passed to cData.

If you do not want to merge data with a form prior to rendering it, then instead of passing a null value to 
cData, you can pass a zero-length byte array:

byte[] cFormData = new byte[0];

The cData parameter is used to prepopulate forms. For information, see “Rendering prepopulated forms” 
on page 68.

Setting preference options to render the form as PDF 

You can render a form design that was created in LiveCycle Designer and saved as a PDF or an XDP file. Set 
the renderForm method’s sFormPreference parameter to one of the following values:

PDFForm: Renders the form as an interactive PDF document.

PDF: Renders the forms as a non-interactive PDF document. 

PDFMerge: Merges data into a prerendered PDF form. 

These options are used to render the form as PDF. To view the renderForm method’s 
sFormPreference values that are used to render the form as HTML, see “Setting preference options to 
render the form as HTML” on page 92. 

Specifying the web context of a client application 

Set the renderForm method’s sApplicationWebRoot with a string value that specifies the web 
context of the client application that uses the Form Server Module API. This value is combined with the 
sTargetURL parameter to construct an absolute URL to access application-specific web content. 
Typically, this is an URI value, as shown in the following example: 

String sApplicationWebRoot = "http://<AppServer>:<AppPort>/LoanApp";



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Specifying the target URL     54

Specifying the target URL 

Set the renderForm method’s sTargetURL parameter to specify the target URL to where form data is 
posted. Typically, this parameter references a Java servlet located on the J2EE application server on which 
the client application is deployed. For example, in the sample loan application, data is posted to the 
HandleData Java servlet. Usually, this value is an URL value, as shown in the following example:

String sTargetURL = "http://<AppServer>:<AppPort>/LoanApp/HandleData"

When the form is rendered to a client web browser, the user fills in the form and clicks the Submit button. 
Data is posted to the URL specified by the sTargetURL parameter. If you specify an invalid value, a 
RenderFormException is thrown. For more information about this parameter, see the Form Server 
Module API Reference. 

A Submit button on a form design may have a URL that specifies the location to where data is posted (the 
URL value is specified in the Submit to URL text box). If these two values conflict, the URL in the form 
design overrides the value of sTargetURL.

If you have a form that contains a Submit button and a calculate button (with a corresponding script that 
runs at the server), you must use sTargetURL to specify the location where the form is sent to calculate 
the script. Use the Submit button on a form design to specify the URL to where data is posted. For 
information, see “Calculating Form Data” on page 95. 

Specifying the PDF version

You can use the Form Server Module API to specify the version of the PDF file to render. You can render a 
form as PDF version 1.5 or 1.6. By default, a form that is rendered as PDF is version 1.6. To change the PDF 
version to 1.5, assign the renderForm method’s sOptions parameter with the following string value:

PDFVersion=1.5

Caching PDF forms

You can use the Form Server Module API to cache a form that is rendered as PDF in the server cache. Each 
form is cached after it is generated for the first time. On a subsequent render, if the cached form is newer 
than the form design’s timestamp, the form is retrieved from the cache. By caching forms, you improve the 
performance of the Form Server Module because it does not have to retrieve the form design from a 
repository and re-render the form. 

To cache a form in the server cache, assign the renderForm method’s sOptions parameter with the 
following string value:

CacheEnabled=True

Form designs that have the same FormQuery (an argument for the renderForm method) but are stored 
in different ContentRootURI (another argument for the renderForm method) locations are not cached 
in the same cache location. Each ContentRootURI location has a unique cache location so that form 
designs from different URI locations are not overwritten.

In addition to using the Form Server Module API, you must also enable form caching in LiveCycle Designer. 
For information see, the LiveCycle Designer Help.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Caching PDF forms in the client web browser     55

Caching PDF forms in the client web browser

You can use the Form Server Module API to cache a PDF form in the client web browser cache. Only forms 
that are rendered as interactive forms can be stored in the client web browser cache. That is, the value of 
the renderForm methods sFormPreference parameter must be PDFForm. For information, see 
“Setting preference options to render the form as PDF” on page 53. 

When a client web browser makes a request to the Form Server Module for a PDF, the Form Server Module 
generates the PDF and stores it in the server cache. The PDF form is also cached by the browser after it is 
sent to the client web browser. 

When subsequent requests for the PDF form are made, a time stamp located in the PDF form that is stored 
in the client web browser cache is compared with the time stamp of the PDF form that is generated by the 
Form Server Module and stored in the server cache. If they are the same, the PDF form is retrieved from the 
client cache. This results in reduced bandwidth usage and improved performance because the Form 
Server Module does not have to redeliver the same content to the client web browser.

To cache a form in the client web browser cache, assign the renderForm method’s sOptions parameter 
with the following string value:

clientCache=True

Note: The default value for clientCache is false. 

Accessing LiveCycle Form Manager application store

If your deployment of LiveCycle Forms requires the Form Server Module to access the application store 
that accompanies LiveCycle Form Manager to retrieve resources, such as a form design, then you must 
create a Java Context object that is required to access the application store. Without the Java Context 
object, the Form Server Module will not be able to access the application store and retrieve the necessary 
resources.

After you create the necessary Context object, you must call the IFormServer interface’s 
setInvocationContext method and pass the Context object. You must call the 
setInvocationContext method before you call the renderForm method. For more information 
about the setInvocationContext method, see the Form Server Module API Reference. 

Note: For information about authenticating users with User Manager, see “Authenticating Users” on 
page 110.

Setting the Standalone option

If your business requirements do not require the Form Server Module to perform server-side calculations, 
you can set the Standalone option to true, which results in forms being rendered without state 
information. This setting improves the performance of the Form Server Module.

State information is necessary if you want to render an interactive form to an end user who then enters 
information into the form and submits the form back to the Form Server Module. The Form Server Module 
then performs a calculation operation and renders the form back to the user with the results displayed in 
the form.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Setting XCI run-time options     56

If a form without state information is submitted back to the Form Server Module, only the XML data is 
available. That is, you can invoke the processFormSubmission method to retrieve XML data from the 
form; however, server-side calculations are not performed. For information, see “Retrieving submitted 
form data” on page 60.

To render a form without state information, assign the renderForm method’s sOptions parameter with 
the following string value:

StandAlone=true

Note: The default value for this option is false.

Setting XCI run-time options

An XCI file is a configuration file that the Form Server Module uses. By default, Form Server Module uses a 
XCI file named pa.xci which is located in the formServerEJB.jar file (this file is located within the 
LiveCycle.ear file). 

You can use the Form Server Module API to set XCI run-time options that are executed when the 
renderForm or processFormSubmission methods are invoked. By setting XCI run-time options, you 
can change configuration values. For example, you can change the font that is displayed within a rendered 
form. The ability to set XCI run-time options is optional. 

The Form Server Module currently uses a default XCI configuration file named pa.xci. This default XCI is 
parsed as an XML DOM on each request (each time processFormSubmission or renderForm is 
invoked), and the XCI is updated based on the Form Server Module API options that are specified. 

You define XCI run-time options by assigning the renderForm (or processFormSubmission) 
method’s sOptions parameter with the following string value:

XCI=<path-expression>=<value>;<path-expression>=<value>;..<path-expression
>=<value>

where <path-expression> is an x-path expression that is relative to the configuration root element 
representing the element to update. <value> is the value to assign to the path expression. If the value is 
omitted, the element is cleared.

The following example changes the default typeface to MyriadPro:

XCI=present/pdf/fontInfo/defaultTypeface=MyriadPro

An XCI option consists of a series of XCI updates that are delimited by a semicolon. Each update specifies 
an XCI path that is updated and followed by a value to be set. If the path location does not exist, it is 
created. If the path location does exist, it is updated. 

Only one XCI option is supported in the sOption parameter. If more than one XCI option is specified, the 
first one is considered and additional ones are ignored. However, as stated, a single XCI option can consist 
of multiple XCI updates. For a complete list of all XCI options that can be set by using the Form Server 
Module API, see the Form Server Module API Reference. 

Note: An @ character can be used to set an XCI attribute. Support for x-path is limited and only / and @ 
characters are supported. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to render a form as PDF     57

Creating application logic to render a form as PDF

The following process describes how to render a form to a client web browser by locally invoking the Form 
Server Module:

1. Create an EJBClient object by calling the EJBClient constructor. For information, see “Locally 
invoking Form Server Module” on page 31.

2. Call the EJBClient object’s renderForm method and set its parameters (this is shown in the 
example that follows this numbered list). This method returns an IOutputContext interface. (You are 
able to get the IOutputContext interface's content type and its byte stream. A typical usage involves 
using Java classes to send the byte stream to the client web browser. This is shown in the example that 
follows this list).

3. Create a Java ServletOutputStream object used to send a byte stream to the client web browser. 

4. Set the Java HttpServletResponse object’s content type to match the IOutputContent object’s 
content value. You can achieve this by calling the HttpServletResponse object’s 
setContentType method and passing the IOutPutContent object’s getContentType return 
value.

5. Create a byte array and populate it by calling the IOutputContent object’s getOutputContent 
method. This task assigns the content of the IOutputContent object to a byte array. 

6. Call the HttpServletResponse object’s write method to send a data stream to the client web 
browser. Pass the byte array to the write method. 

The following code example renders a form named Loan.xdp to a client web browser.

Example 3.1 Rendering a form to a client web browser using an EJBClient object

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create a EJBClient object
EJBClient formServer = new EJBClient();

//Declare and populate local variables to pass to renderForm
String sFormQuery = "Loan.xdp";       //Defines the form design to render
String sFormPreference = "PDFForm";       //Defines the preference option
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
String sTargetURL = "http://<AppServer>:<AppPort/LoanApp>/HandleData";
String sApplicationWebRoot = "http://<AppServer:<AppPort>/LoanApp";
byte[] cData = new byte[0]; //cData

try{
//Call renderForm
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,       //sFormPreference
 cData,                    //cData, 
 "CacheEnabled=False", //sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sContentRootURI,      //sContentRootURI



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a Form using a SOAPClient object     58

 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

}

Note: This example shows how to render a form by locally invoking the Form Server Module. You can use 
an EJBClient object to remotely invoke the Form Server Module. For information, see “Remotely 
invoking Form Server Module” on page 32.

Rendering a Form using a SOAPClient object 
You can use a SOAPClient object to render a form as PDF (or as HTML) to a client web browser as part of 
an HTTP response. You must set the soap endpoint to successfully render a form. For information, see 
“Invoking Form Server Module using SOAP” on page 34.

Other then setting a soap endpoint, the application logic to render a form is the same as using an 
EJBClient object. For information, see “Rendering a form using an EJBClient object” on page 52.

Example 3.2 Rendering a form to a client web browser using a SOAPClient object

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create a SOAPClient object
SOAPClient formServer = new SOAPClient();

//Set the soap end point
formServer.setSoapEndPoint("http://<AppServerURL>:8080/jboss_net/services/

AdobeFSService");

//Declare and populate local variables to pass to renderForm



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a Form using a SOAPClient object     59

String sFormQuery = "Loan.xdp";       //Defines the form design to render
String sFormPreference = "PDFForm";       //Defines the preference option
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
String sTargetURL = "http://<AppServer>:<AppPort/LoanApp>/HandleData";
String sApplicationWebRoot = "http://<AppServer:<AppPort>/LoanApp";
byte[] cData = new byte[0]; //cData

try{
//Call renderForm
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,        //sFormPreference
 cData,                    //cData 
 "CacheEnabled=False",//sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sContentRootURI,      //sContentRootURI
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}//end of try
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

}

Note: To successfully invoke the Form Server Module using a SOAPClient object, you must place 
additional JAR files into your application’s class path. For information, see “Including LiveCycle 
Forms library files” on page 28. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Retrieving submitted form data     60

Retrieving submitted form data
Most web applications require a user to fill in an online form and submit the data. After the client 
application retrieves data, it can process it in a variety of ways, such as storing it in a database, sending it to 
another application, merging it with another form, or displaying it in a web browser. What you do with the 
data depends on your business requirements.

Consider the loan application introduced earlier in this chapter. After the user fills in the loan form and 
clicks the Submit button, data is submitted to the HandleData Java servlet. For information about this 
application, see “Sample loan application” on page 49. 

The following diagram shows data being submitted to the HandleData Java servlet from an interactive 
form displayed in a web browser.

The following table explains the steps in the diagram.

Form design considerations

When data is submitted from a client web browser to LiveCycle Forms, it can be submitted as either XML or 
PDF data. To retrieve the data that is entered into form fields, the data must be submitted as XML data. If 
data is submitted as PDF, you cannot retrieve individual field values. The content type of data that is 
submitted as XML is text/xml. In contrast, the content type of data that is submitted as PDF is 
application/pdf. The content type of data submitted as XDP is 
application/vnd.adobe.xdp+xml.

The form design must be configured correctly in LiveCycle Designer for data to be submitted as XML data. 
To properly configure the form design to submit XML data, ensure that the Submit button that is located 
on the form design is set to submit XML data. For information about setting the Submit button to submit 
XML data, see the LiveCycle Designer Help.

Note: There are use cases to submit data from a client web browser to LiveCycle Forms as PDF data. For 
information, see “Transferring PDF Data” on page 103. 

1 A user fills in an interactive form and clicks the form’s Submit button.

2 Data is submitted to the HandleData Java servlet as XML data.

3 The HandleData Java servlet contains application logic to retrieve the data.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Relationship between form fields and XML data     61

Relationship between form fields and XML data

When form data is submitted as XML, you can use the Form Server Module API to retrieve XML data that 
was submitted. All form fields appear as nodes in an XML document. The node values correspond to the 
values that the user filled in. Consider the loan form introduced earlier in this chapter. Each field in this 
form appears as a node within the XML data. The value of each node corresponds to the value that a user 
fills in. Assume a user fills in the loan form with data shown in the following form:

The following example shows a section of XML data that is retrieved by using the Form Server Module API.

The fields in the 
loan form. These 
values can be 
retrieved using 
Java XML classes, 
such as those 
located in the 
org.w3c.dom 
package. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to retrieve submitted data     62

Creating application logic to retrieve submitted data

The Form Server Module API contains methods that you can use to retrieve submitted form data. The 
processFormSubmission method must be invoked to retrieve submitted data. The 
processFormSubmission method is overloaded. The first version of processFormSubmission 
requires the following arguments:

● A javax.servlet.http.HttpServletRequest object.

● A string value that represents run-time options. For information, see the Form Server Module API 
Reference.

This version of ProcessFormSubmission is used in the code example located in this section. For 
information, see “Retrieving submitted form data” on page 64.

 The other version of ProcessFormSubmission requires the following arguments:

● A byte array or a Document object that contains submitted data. You can create a Document object by 
invoking the javax.servlet.http.HttpServletRequest object’s getInputStream method 
within the Document constructor:

Document myDocument = new Document(req.getInputStream());

 For information about a Document object, see “Working with the Document object” on page 43.

●  A string value that specifies the CGI environment variables. 

● A string value that specifies the HTTP header User-Agent that provides information about the target 
device.

● A string value that represents run-time options. 

The ProcessFormSubmission method returns an IOutputContext interface that you can use to 
retrieve the submitted data. Before you retrieve submitted data, it is recommended that you determine 
whether the Form Server Module is finished processing the data.

 When a client web browser submits a form, this does not necessarily mean that the Form Server Module is 
finished processing the data. With each submission, the data must be passed to the 
processFormSubmission method, which returns an IOutputContext interface.

To determine if the Form Server Module is finished processing the data, call the IOutputContext 
interface’s getFSAction method. This method returns one of the following values:

● 0 (Submit)—Validated XML data is ready to be processed.

● 1 (Calculate)—Calculation results must be written to the client application. For information, see 
“Calculating Form Data” on page 95.

● 2 (Validate)—Calculations and validations must be written to the client application.

● 3 (Next)—The current page has changed with results that must be written to the client application. 

● 4 (Previous)—The current page has changed with results that must be written to the client application.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to retrieve submitted data     63

If the getFSAction method returns the value 0, you can retrieve the submitted data. To retrieve 
submitted data, you convert the IOutputContext interface’s content to an XML data source. After you 
perform this task, you can retrieve data from the XML data source by using the following Java Document 
Object Model (DOM) classes:

● DocumentBuilderFactory: Used to create a DocumentBuilder object.

● DocumentBuilder: Used to create a Document object.

● Document: Used to create an object that represents an entire XML document.

● NodeList: Used to create an object that represents a collection of nodes within an XML document.

● Node: Used to create an object that represents a single node within an XML document.

To use these classes in your Java project, add the following import statements: 

● import org.w3c.dom.Document;

● import org.w3c.dom.NodeList;

● import org.w3c.dom.Node;

● import org.w3c.dom.Element;

● import javax.xml.parsers.*;

The following process describes how to create application logic to retrieve data from a form:

1. Create an EJBClient object. For information, see “Invoking the Form Server Module” on page 30.

2. Call the EJBClient object’s processFormSubmission method. This method returns an 
IOutputContext interface that contains the data submitted from the form. For information about 
the processFormSubmission method, see the Form Server Module API Reference. 

3. Create a byte array by calling the IOutputContext interface’s getOutputContent method.

4. Create an InputStream object by calling the ByteArrayInputStream constructor and passing the 
byte array.

5. Create a DocumentBuilderFactory object by calling the static DocumentBuilderFactory 
object’s newInstance method.

6. Create a DocumentBuilder object by calling the DocumentBuilderFactory object’s 
newDocumentBuilder method.

7. Create a Document object by calling the DocumentBuilder object’s parse method and passing the 
InputStream object.

8. Retrieve the value of each node within the XML document. One way to accomplish this is to create a 
custom method that accepts two parameters: the Document object and the name of the node whose 
value you want to retrieve. This method returns a string value representing the value of the node. In the 
code example that follows this process, this custom method is called getNodeText. The body of this 
method is shown. 

9. Calls the getNodeText method for each field from which to retrieve a value. For example, to retrieve 
all fields in the loan form, you must call getNodeText 13 times.



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to retrieve submitted data     64

The following code example shows application logic that retrieves data submitted from a form.

Example 3.3 Retrieving submitted form data

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

// Create an EJBClient object and an IOutputContext interface 
EJBClient formServer = new EJBClient();
IOutputContext myOutputContext = null;

try{

// Call processFormSubmission to handle the submitted data. Pass the
// HttpServletRequest object
myOutputContext = formServer.processFormSubmission(req,"OutputType=0"); 

 //Determine the processing state associated with the submitted form
  short fsAction = myOutputContext.getFSAction();

if (fsAction ==0)
{

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] formOutput = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
formOutput = myOutputContext.getOutputContent();

//Create an InputStream object 
InputStream formInputStream = new ByteArrayInputStream(formOutput);

// Create a DocumentBuilder object
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

// Create a Document object by calling the DocumentBuilder object’s
// parse method and pass the InputStream object
Document myDOM = builder.parse(formInputStream);

// Call getNodeText for each field in the form
String myAmount = getNodeText("Amount", myDOM);
String myLastName = getNodeText("LastName", myDOM); 
String myFirstName = getNodeText("FirstName", myDOM);
String mySSN = getNodeText("SSN", myDOM);
String myTitle = getNodeText("PositionTitle", myDOM);
String myAddress = getNodeText("Address", myDOM);
String myCity = getNodeText("City", myDOM);
String myStateProv = getNodeText("StateProv", myDOM);
String myZipCode = getNodeText("ZipCode", myDOM);
String myEmail = getNodeText("Email", myDOM);
String myPhoneNum = getNodeText("PhoneNum", myDOM);
String myFaxNum = getNodeText("FaxNum", myDOM);



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Saving submitted data as XML     65

String myDescription= getNodeText("Description", myDOM);
}//End of If statement

}//End of try statement

catch (Exception ioEx)
 {
 System.out.println("Exception error is: " +ioEx);
 }
}// End of doPost

// Create the getNodeText custom method
private String getNodeText(String nodeName, Document myDOM)
{

//Get the node by name. NodeName is the name of the 
//node passed to this method
NodeList oList = myDOM.getElementsByTagName(nodeName);
Node myNode = oList.item(0); 
NodeList oChildNodes = myNode.getChildNodes();

String sText = "";
for (int i = 0; i < oChildNodes.getLength(); i++)
  {

Node oItem = oChildNodes.item(i);
if (oItem.getNodeType() == Node.TEXT_NODE)

 {
sText = sText.concat(oItem.getNodeValue());
 }

  }
return sText;

}//End of getNodeText

Note: This code example retrieves data from the loan form. For information, see “Relationship between 
form fields and XML data” on page 61.

Saving submitted data as XML

You can save submitted form data as an XML file by using the IOutputContext interface that is returned 
by the ProcessFormSubmission method. To save submitted form data as an XML file, make sure the 
data is submitted as XML data. That is, ensure that the content type of the submitted data is text/xml or 
application/vnd.adobe.xdp+xml. For information, see “Form design considerations” on page 60.

To save data that is submitted from a client device, write the data to a java.io.File object. Create a Java 
java.io.File object by using its public constructor and ensure that you specify XML as the file name 
extension. Populate this object with the submitted XML data by invoking the IOutputContext 
interface’s getOutputContent method. This method returns a byte array that contains XML data.

Write the byte array contents to a java.io.File object by using a java.io.FileOutputStream 
object. Invoke this object’s write method and pass the byte array. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Converting the content type of form data     66

Example 3.4 Saving submitted data as XML

//Create an EJBClient object, which implements IFormServer
EJBClient formServer = new EJBClient();

// Call processFormSubmission to handle the submitted XML data. Pass the
// HttpServletRequest object 
IOutputContext outputContext = 
formServer.processFormSubmission(req,"OutputType=0"); 

//Determine the content type -- make sure it is text/xml
String ct = outputContext.getContentType(); 

if ((ct.equals("text/xml"))||(ct.equals("application/vnd.adobe.xdp+xml")))
{

 // Get the length of the output stream
int outLength = outputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] formOutput = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
formOutput = outputContext.getOutputContent();

//Create a XML File object
File tempFile = new File("C:\\myXML.xml");

//Create a Java FileOutputStream object
FileOutputStream myOutput = new FileOutputStream(tempFile) ; 

//Write the byte array contents to the file
myOutput.write(formOutput); 
myOutput.close(); 

}

Converting the content type of form data

Typically, the Form Server Module returns data to a client application as XDP data. However, you can use 
the Form Server Module API to convert the content type of data that the Form Server Module returns to a 
client application.

Consider, for example, a situation where a form that was created by using Acrobat is submitted. However, 
the client application that handles the submitted form contains business logic to parse XFA data (the 
format of forms created by using LiveCycle Designer), not XFDF data (the format of forms created by using 
Acrobat). In this situation, the XFDF data can be converted to XFA data so that the client application can 
parse the data and retrieve the values that a user entered.

You can convert the content type of data by setting a run-time option named exportDataFormat that 
you pass to the processFormSubmission method. To pass the exportDataFormat to the 
processFormSubmission method, set the sOptions parameter with the following string value:

exportDataFormat=<value>



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Converting the content type of form data     67

The exportDataFormat run-time option supports the following values:

XDP: Returns submitted data as XDP (default). 

XDP.toXFAData: Returns submitted data as XDP with applicable conversions to XFA data (for example, 
XFDF data is converted and returned as XFA data in the datasets packet).

XDP.DataOnly: Returns only the data packets of the XDP data (exclude the PDF base64 encoded 
packet). Applicable conversions to XFA data are performed (for example, XFDF data is converted to XFA 
data if an Acrobat form is submitted).

XMLData: Returns XML data without any XFA data. This is useful when you do not want to parse 
through elements such as XDP and datasets. Applicable conversions to XFA data are performed. For 
example, XFDF data is converted to XFA data if an Acrobat form is submitted.

Auto: Determines the content type depending on what format is submitted. If XDP is submitted, XDP is 
returned. If XML data is submitted, XML data is returned. If Url-encoded data is submitted, XML data is 
returned. If PDF is submitted, XDP is returned. Any applicable conversions to XFA data are done. XFDF 
data is converted to XFA data if an Acrobat form is submitted.

The following table lists the different ways in which a form’s content type can be converted.
 

ExportDataFormat 
value

Submitted content type Returned content type 

XDP ● text/xml

● application/vnd.adobe.xdp+xml

● application/pdf,

● application/x-www-form-urlencoded

application/vnd.adobe.xdp+xml

XDP.toXFAData ● text/xml

● application/vnd.adobe.xdp+xml

● application/pdf 

● application/x-www-form-urlencoded

application/vnd.adobe.xdp+xml

XDP.DataOnly ● text/xml

● application/vnd.adobe.xdp+xml

● application/pdf

● application/x-www-form-urlencoded

application/vnd.adobe.xdp+xml

XMLData ● text/xml

● application/vnd.adobe.xdp+xml

● application/pdf

● application/x-www-form-urlencoded

text/xml

Auto ● application/vnd.adobe.xdp+xml

● application/pdf

application/vnd.adobe.xdp+xml

Auto ● text/xml

● application/x-www-form-urlencoded

text/xml



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering prepopulated forms     68

Rendering prepopulated forms
A client application can prepopulate a form with data prior to rendering it. The data can come from a 
variety of sources, such as an enterprise database, another form, or another application. Prepopulating a 
form has several advantages:

● Enables the user to view custom data in a form

● Reduces the amount of typing the user does to fill in a form

● Ensures data integrity by having control over where data is placed

Using the Form Server Module API, you can create a client application capable of prepopulating a form. 
Consider the loan sample application introduced earlier in the chapter. After data is submitted to the 
HandleData Java servlet, a confirmation form is rendered back to the web browser. This form contains data 
that the user entered into the loan application. For information about this form, see “Confirmation form” 
on page 51.

The following diagram shows the HandleData Java servlet prepopulating the confirmation form and 
rendering it to the client web browser.

The following table explains the steps in the diagram.

Note: Prepopulating a form is also known as merging data with a form.

Creating application logic to render a prepopulated form

You must assign a byte array to the renderForm method’s cData parameter to prepopulate a form prior 
to rendering it. This byte array represents an XML data source containing fields located in the form. For 
each field that you want to prepopulate, you must specify a value. It is not necessary to match the exact 
structure of the XML document. For example, to prepopulate the confirmation form, specify a value for the 
LastName, FirstName, and Amount fields.

Assume that a form containing 10 fields has data in 4 of the fields. Next, assume that you want to 
prepopulate the remaining 6 fields. In this situation, you must specify 10 XML elements in the XML data 
source used to prepopulate the form. If you specify only 6 elements, the original 4 fields will be empty.

1 The HandleData Java servlet prepopulates the confirmation form with data.

2 The confirmation form is rendered to the client web browser. 

3 The confirmation form is displayed in the client web browser. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to render a prepopulated form     69

Here are three ways in which you can create a byte array to assign to the cData parameter:

● Convert an existing XML document containing data to merge to a byte stream.

● Assign a string representing an XML document to a byte array. To convert a string to a byte array, you 
call the String object’s getBytes method. If the XML document is encoded as UTF-8, it must 
remain that way. Ensure that the getBytes method does not change UTF-8 to unicode encoding.

● Create an in-memory XML data source using Java DOM classes. For information, see “Creating an 
in-memory XML data source” on page 83.

The method you choose depends on your preference. However, you would typically use the third method 
when prepopulating a form containing many fields or a dynamic form. For information about 
prepopulating a dynamic form, see “Rendering prepopulated dynamic forms” on page 82.

Note: Instead of assigning a byte array to the renderForm method’s cData parameter, you can assign a 
Document object. For information, see “Prepopulating a form using a Document object” on page 72.

Converting an XML document to a byte stream

Before you convert an XML document to a byte stream, ensure its schema is valid and it contains data 
values that you want to merge with the form. Assume you want to merge the data entered into the loan 
form shown earlier in this chapter with the confirmation form. The first step is to ensure the XML schema 
matches the form, as shown in this example.

The next step is to ensure that the XML document contains data values, as shown in this example.

Once you ensure that the XML document’s schema is valid and it contains data that you want to merge 
with the form, you convert the XML document to a byte stream. However, you must first reference it. Using 
a Java URL object, you can reference an XML document located on any computer accessible over the 
Internet or an intranet.

You can use a BufferedInputStream Java object to convert an XML document to a byte stream. After 
you create a byte stream, you can assign it to the renderForm method’s cData parameter. For 
information about this method, see the Form Server Module API Reference. 

The following process describes the application logic to prepopulate a form by converting an XML 
document to a byte stream:

1. Create a Java URL object that references an existing XML document.

2. Create a BufferedInputStream object by using its constructor. Within the constructor, pass the URL 
object and call its openStream method, as the following example shows:

BufferedInputStream oStream = new 
BufferedInputStream(URLOb.openStream());

Corresponds to the FirstName field
Corresponds to the LastName field

Corresponds to the Amount field



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to render a prepopulated form     70

3. Create a user-defined method that takes a BufferedInputStream object as a parameter and returns 
a byte stream. This method, named convertXML, is shown in the example following this process.

4. Assign the byte stream to the renderForm method’s cData parameter. When renderForm is called, 
the byte stream is merged into the form specified by the sFormQuery parameter.

The following code example prepopulates the confirmation form by assigning a byte stream to the 
renderForm method’s cData parameter. The byte stream is created from an XML document named 
ConfirmData.xml and resembles the XML document shown in the previous diagram.

Example 3.5 Prepopulating a form by converting an XML document to a byte stream

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Declare local variables to pass to renderForm
String sFormName = "Confirm.xdp"; //Defines the rendered form
String sFormPreference = "PDF";
String sApplicationWebRoot = "http://<AppServer>:<AppPort>/LoanApp";
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
try{

// Create an URL object that references an XML document named
// ConfirmData.xml
URL URLOb = new

URL("http://AppServer>:<AppPort>/LoanApp/forms/ConfirmData.xml");

// Create a BufferedInputSteam object. Pass the URL object to
// its constructor and call openStream
BufferedInputStream oStream = new BufferedInputStream

(URLOb.openStream());

//Populate the xXMLData parameter by calling convertXML. Pass the 
//BufferendInputSteam object
byte[] cData = ConvertXML(oStream);

IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,            //sFormPreference
 cData,                  //cData, 
 "CacheEnabled=False",//sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sApplicationWebRoot, //sApplicationWebRoot
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Creating application logic to render a prepopulated form     71

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}//end of try
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

}

Converting an XML string to a byte stream

You can assign a byte array a string variable representing the XML document as opposed to converting an 
entire XML document to a byte stream. The String object’s getBytes method is called, which converts 
the string to an array of bytes. You must specify the field names and values within the string. 

The following code example prepopulates the confirmation form by converting a string variable to a byte 
stream.

Example 3.6 Prepopulating a form by converting a string variable to a byte stream

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Declare local variables to pass to renderForm
String sFormName = "Confirm.xdp"; //Defines the rendered form
String sFormPreference = "PDF";
String sApplicationWebRoot = "http://AppServer>:<AppPort>/LoanApp";
String sContentRootURI = "http://AppServer>:<AppPort>/LoanApp/forms";

try{
//Assign a stream byte to the cData parameter
String confirmData =

"<root><FirstName>Jerry</FirstName><LastName>Johnson
</LastName><Amount>250000</Amount></root>";

byte [] cData = confirmData.getBytes("UTF-8");

//Call renderForm and pass cData to prepopulate the confirmation form
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,        //sFormPreference
 cData,                   //cData, 
 "CacheEnabled=False", //sOptions



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Prepopulating a form using a Document object     72

 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sApplicationWebRoot, //sApplicationWebRoot
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}//end of try
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

}//end of doPost

Prepopulating a form using a Document object

You can prepopulate a form by assigning the renderForm method’s cData parameter a Document 
object. The Document object must store valid XML containing data values that you want to merge with 
the form. For information, see “Converting an XML document to a byte stream” on page 69.

After you create a Document object, invoke the renderForm method and pass the Document object. For 
information about creating a Document object, see “Working with the Document object” on page 43.

The following code example prepopulates a form by using a Document object. 

Example 3.7 Prepopulating a form using a Document object

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Declare local variables to pass to renderForm
String sFormQuery = "Confirm.xdp"; //Defines the rendered form
String sFormPreference = "PDF";
String sApplicationWebRoot = "http://<AppServer>:<AppPort>/LoanApp";
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Prepopulating a form using a Document object     73

try{
// Create a Document object that references an XML document named
// ConfirmData.xml

//Create an URL object
URL myURL = new 

URL("http://<AppServer>:<AppPort>/DataFile/ConfirmData.xml");

//Create a Document object
Document myXMLDocument = new Document(myURL);

//Invoke renderForm
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,        //sFormPreference
 myXMLDocument,          //pass the Document object, 
 "CacheEnabled=False",  //sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 null,                   //sTargetURL
 sApplicationWebRoot, //sApplicationWebRoot
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}//end of try
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}
}//end of doPost



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a form at the client     74

Rendering a form at the client
You can optimize the delivery of PDF content and improve LiveCycle Form’s ability to handle network load 
by using the client-side rendering capability of Acrobat 7.0 or Adobe Reader 7.0 or higher.

This process is known as rendering a form at the client. To render a form at the client, the client device 
(typically a web browser) must use Acrobat 7.0 or Adobe Reader 7.0 or higher.

To render a form at the client, set the following run-time options that belong to the renderForm 
method’s sOptions parameter:

● RenderAtClient 

● SeedPDF (this is conditional depending on the transformation)

First, you must assign a value to the RenderAtClient run-time option. If RenderAtClient is set to 
true, the form is delivered to the client device where it is rendered.

If RenderAtClient is auto (the default value), the form design determines whether the form is 
rendered at the client. The form design must be a dynamic form design. For information about a dynamic 
form design, see the LiveCycle Designer Help.

The SeedPDF run-time option is used when the transformation is PDF or PDFForm (the renderForm 
method’s sFormPreference parameter to PDF or PDFForm). For information about setting the 
renderForm method’s sFormPreference parameter, see “Setting preference options to render the 
form as PDF” on page 53.

The SeedPDF run-time option is a PDF container that acts as the seed from which a dynamically rendered 
PDF is displayed. It may contain additional fonts required by the form being rendered that are not 
provided with the form itself.

When you use the SeedPDF option to optimize the performance of the Form Server Module, the 
transformation is responsible for combining the PDF container with the form design and the xml data. 
Both the form design and the xml data are delivered to Acrobat or Adobe Reader, where the form is 
rendered.

If the transformation is PDFMerge (the renderForm method’s sFormPreference parameter to 
PDFMerge), then it is not necessary to use the SeedPDF run-time option. Instead, assign the 
renderForm method’s sFormQuery parameter with the file name of the seed.pdf. You must also convert 
the form design and the xml data to a byte array and assign the byte array to the renderForm method’s 
cData parameter. A possible usage for passing in the form design with the data is in cases where the form 
design is perhaps not available on disk, or it is being dynamically generated by the application.

If you want to define the seedPDF run-time option, it is recommended that you use LiveCycle Designer to 
create a simple dynamic PDF file for use as a seed PDF file. The following steps are required to perform this 
task: 

1. Determine whether you need to embed any fonts within the seed PDF file. Open a new file. The seed 
PDF file will need to contain additional fonts required by the form being rendered, if any. When 
embedding fonts into the seed PDF file, make sure you are not violating any font licensing agreements. 
In LiveCycle Designer, you can determine whether you can legally embed fonts: save the seed PDF file 
as a dynamic PDF form. Upon saving, if there are fonts you cannot embed into the form, LiveCycle 
Designer displays a message listing the fonts you cannot embed. This message is not displayed in 
LiveCycle Designer for static PDFs. 



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a form at the client     75

2. If you are creating the seed PDF file in LiveCycle Designer, Adobe recommends that, at a minimum, you 
add a text field that contains a message. The message should be directed at users of earlier versions of 
Adobe Reader stating that they need Acrobat 7.0 or Adobe Reader 7.0 to view the document.

3. Save the seed PDF file as a dynamic PDF file with the PDF file extension.

The following process describes how to render a form at the client (in this example, the seedPDF run-time 
option is not defined):

1. Create an EJBClient object by calling the EJBClient constructor. For information, see “Locally 
invoking Form Server Module” on page 31.

2. Convert a form design (an XDP file that contains both data and a form design) into an array of bytes. A 
form design is based on XFA architecture and can contain both data and a form design. For information 
about XFA architecture, go to http://partners.adobe.com/public/developer/xml/index_arch.html. 

3. Set the RenderAtClient run-time option to true (this run-time option belongs to the renderForm 
method’s sOptions parameter). 

4. Invoke the renderForm method and set its parameters (this is shown in the example that follows this 
numbered list). Set the sFormPreference parameter to PDFForm. Also, assign the byte array 
(created in step two) to the cData parameter.

5. The renderForm method returns an IOutputContext interface. You are able to get the 
IOutputContext interface's content type and its byte stream. A typical usage involves using Java 
classes to send the byte stream to the client web browser. For information, see “Rendering a form using 
an EJBClient object” on page 52.

The following code example renders a form at the client. 

Example 3.8 Rendering a form at the client

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Reference an XDP that contains data and a form design
File myXDP = new File("C:\\LoanForm.xdp");

// Create a FileInputStream object
FileInputStream fInput = new FileInputStream(myXDP); 

// Get the size of the buffer
int mSize = fInput.available(); 
byte [] myBytes = new byte[mSize];

//Populate the byte array
fInput.read(myBytes);

http://partners.adobe.com/public/developer/xml/index_arch.html


Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Rendering a form at the client     76

// Declare local variables to pass to renderForm
String sFormQuery = "Seed.pdf"; //Defines the file name of the Seed PDF
String sFormPreference = "PDFMerge";
String sApplicationWebRoot = "http://<AppServer>:<AppPort>/LoanApp";
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
String sBaseURL = null;

// Define the run-time option
String options = "RenderAtClient=true";

try{
//Call renderForm()
IOutputContext myOutputContext = formServer.renderForm(

  sFormQuery,//sFormQuery
  sFormPreference,//sFormPreference
  myBytes,//cData, 
  options,//sOptions
  null,//sUserAgent,
  sApplicationWebRoot,//sApplicationWebRoot
  null, //sTargetURL
  sContentRootURI,//sContentRootURI
  sBaseURL//sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}//end of try
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

}



Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Passing a form design by value     77

Passing a form design by value
Typically, a form design is created in LiveCycle Designer and is passed by reference to the Form Server 
Module. This is achieved by specifying a value for the renderForm method’s sFormQuery and 
sContentRootURI parameters. For information, see “Specifying the form design to render” on page 53.

The following list describes the advantages of passing a form design by reference: 

● Form designs can be large and, as a result, it is more efficient to pass them by reference to avoid having 
to marshal form design bytes by value. The Form Server Module can also cache the form design so that 
when cached, it does not have to continually read the form design from a repository.

● By using both the FormQuery parameter and the ContentRootURI parameter, the Form Server 
Module can also resolve the location of linked content within the form design. For example, linked 
images that are referenced from within the form design are relative URLs. Linked content is always 
assumed to be relative to the form design location. Therefore, resolving linked content is a matter of 
determining its location by applying the relative path to the absolute location of the form design.

● After forms are rendered, the Form Server Module can perform server-side calculations. To perform 
these calculations, the Form Server Module requires a location to where form designs can be reread. 
The Form Server Module obtains a location by embedding the FormQuery and ContentRootURI 
values as pass-through data in the rendered form. When the client device makes subsequent requests 
for calculations, it submits these parameters along with the data. The Form Server Module uses these 
parameters to reread the form design from the referenced location.

Instead of passing a form design by reference, you can pass a form design by value. Passing a form design 
by value is efficient when a form design is dynamically created; that is, when a client application generates 
the XML that creates a form design. In this situation a form design is not stored in a physical repository 
because it is stored in memory.

The following limitations apply when a form design is passed by value:

● No relative linked content can be within the form design. All images and fragments must be embedded 
inside the form design or referred to absolutely.

● Server-side calculations cannot be performed after the form is rendered. If the form is submitted back 
to the Form Server Module, the data is extracted and returned without any server-side calculations.

● Because HTML can only use linked images at run time, it is not possible to generate HTML with 
embedded images. This is because the Form Server Module supports embedded images with HTML by 
retrieving the images from a referenced form design. Because a form design that is passed by value 
does not have a referenced location, embedded images cannot be extracted when the HTML page is 
displayed. Therefore, image references must be absolute paths to be rendered in HTML.

● Data entered into a rendered HTML form that is passed by value is not submitted back to LiveCycle 
Forms. That is, assume a user enters data into an HTML form that was passed by value and then clicks a 
submit button (that is located on the form). Because the data is not submitted back, you cannot invoke 
the processFormSubmission method and retrieve the data. If you want to pass an interactive form 
by value in order to retrieve data from the user, then use the PDFForm transformation type. Otherwise, 
pass an interactive HTML form by reference. For more information, see “Setting preference options to 
render the form as PDF” on page 53.

You must dynamically create a form design programmatically in order to pass a form design by value. If 
you want to display data within the form that will be rendered as a PDF form, the data must be specified 
within the xfa:datasets element. For information about XFA architecture, go to 
http://partners.adobe.com/public/developer/xml/index_arch.html.

http://partners.adobe.com/public/developer/xml/index_arch.html


Adobe LiveCycle Forms Rendering Interactive Forms as PDF
Developing Custom Applications  Passing a form design by value     78

To pass a form design by value, create an EJBClient object (or a SOAPClient object) and call its 
renderForm method. Assign the following values to the renderForm method’s parameters:   

● sFormQuery: This value is empty when passing a form design by value.

● sFormPreference: This value can be set to a valid PDF or HTML transformation value. For 
information about supported values, see the Form Server Module API Reference. 

● cData: This value must be valid XFA XML specified as a byte array or a Document object.

● sOptions: All run-time options are supported.

● sUserAgent: This value is support but not required. 

● sApplicationWebRoot: This value is supported. 

● sTargetURL: This value is the target for the form submission. For information, see “Specifying the 
target URL” on page 54. 

● sContentRootURI: This value is ignored because the form design is passed by value and the form 
design contains no relative linked content. 

● sBaseURL: This value is ignored because the form design is passed by value and the form design 
contains no relative linked content.



     79

4 Rendering Dynamic Forms

This chapter explains how you can use the Form Server Module API to develop client applications capable 
of rendering dynamic forms across the Internet or an intranet to client devices, typically web browsers. A 
dynamic form can display an undetermined amount of data. An example of a dynamic form is a purchase 
order form that displays purchased items. The number of items appearing in a purchase order form differs 
from customer to customer.

This chapter contains the following information.

Note: Before reading this chapter, it is recommended that you are familiar with using the Form Server 
Module API to render forms. For information, see “Rendering Interactive Forms as PDF” on page 48.

About dynamic forms 
Dynamic forms are useful to display an undetermined amount of data to users. Because the layout of a 
dynamic form adjusts automatically to the amount of data that is merged, you do not need to 
predetermine a fixed layout or number of pages for the form as you need to do with a static form.

Two types of dynamic forms exist: client-side and server-side dynamic forms. A client-side dynamic form is 
typically used to collect data from end users by enabling them to click a button (or another control) that 
produces a new field in which data is entered. The new field appears on the form immediately and does 
not require a round trip to the server. That is, the form is not sent to the J2EE application server hosting 
LiveCycle Forms and then rendered back to the client web browser with the new field. 

Assume, for example, a client-side dynamic form contains fields that enable a user to enter items to 
purchase and a button that enables the user to add new fields. Each time the user clicks the button, a new 
field is added to the form. You can create a client-side dynamic form by using LiveCycle Designer. For 
information, see the LiveCycle Designer Help. 

In contrast, a server-side dynamic form is populated on the server. For example, a client application that 
uses the Form Server Module API can query a database and retrieve an unknown number of records. The 
client application then prepopulates a dynamic form with the data and then renders the form to a client 
web browser. This chapter explains how to use the Form Server Module API to prepopulate and render 
server-side dynamic forms. It does not explain how to create or use client-side dynamic forms.

Consider, for example, a web-based online store. As a user selects items to purchase, the items are added 
to a virtual shopping cart. When the user has finished purchasing items, a dynamic purchase order form is 
displayed that the user can print and keep as proof of the transaction. The dynamic form contains all the 
purchased items, as well as other information, such as a description of the items, the subtotal, taxes, and 
total. 

Topic Description See

About dynamic forms Describes a dynamic form’s characteristics. page 79

Rendering prepopulated 
dynamic forms

Describes how you can use the Form Server Module API to 
prepopulate and render a dynamic form to a client web browser.

page 82



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Form design considerations     80

The following diagram shows an example of a dynamic purchase order form.

Note: Dynamic forms can be prepopulated with data from other sources such as an enterprise database or 
external applications. A web-based application represents only one example of using dynamic 
forms.

Form design considerations

Both server-side and client-side dynamic forms are based on form designs that are created in LiveCycle 
Designer. A form design specifies a set of layout, presentation, and data capture rules, including 
calculating values based on user input. The rules are applied when data is entered into a form. Fields that 
are dynamically added to a dynamic form are subforms that are within the form design. For example, in the 
purchase order form shown in the previous diagram, each line is a subform. For information about creating 
a form design that contains subforms, see the LiveCycle Designer Help. 

XML data source

It is important that you understand the relationship between a form design on which a server-side 
dynamic form is based and the XML data source that is used to prepopulate it. A server-side dynamic form 
is prepopulated with data when a form design is merged with an XML data source. The following two XML 
data sources can prepopulate a dynamic form:

● An XDP data source, which is XML that conforms to XFA syntax.

● An arbitrary XML data source that contains name/value pairs matching the form’s field names (the 
examples in this chapter use an arbitrary XML data source).

Represents 
the 
dynamic 
portion of 
the form.

Represents 
the form’s 
header 
data. This is 
the static 
portion of 
the form



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  XML data source     81

An XML element must exist for every form field that you want to prepopulate. The XML element name 
must match the field name. An XML element is ignored if it does not correspond to a form field or if the 
XML element name does not match the field name.

An XML data source is used to prepopulate both static and dynamic forms. However, the difference is that 
an XML data source that prepopulates a dynamic form contains repeating XML elements that are used to 
prepopulate subforms that are repeated within the form. These repeating XML elements are called data 
subgroups.

The XML data source that is used to prepopulate the dynamic purchase order form shown in the previous 
diagram contains four repeating data subgroups. Each data subgroup corresponds to a purchased item. 
The purchased items are a monitor, a desk lamp, a phone, and an address book.

The following diagram shows the arbitrary XML data source that is used to prepopulate the dynamic 
purchase order form.

The following table explains the letters in the previous diagram.
 

A XML elements used to prepopulate non-repeating fields such as address and city. This is the static 
portion of the form. 

B A data subgroup that contains information about the monitor. 

C A data subgroup that contains information about the desk lamp. 

D A data subgroup that contains information about the phone. 

E A data subgroup that contains information about the address book. 

A

E

D

C

B



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Rendering prepopulated dynamic forms     82

Notice that each data subgroup contains four XML elements that correspond to this information:

● Items part number

● Items description

● Quantity of items

● Unit price

The name of a data subgroup’s parent XML element must match the name of the subform that is located in 
the form design. For example, in the previous diagram, notice that the name of the data subgroup’s parent 
XML element is detail. This corresponds to the name of the subform that is located in the form design 
on which the purchase order form is based. If the name of the data subgroup’s parent XML element and 
the subform do not match, a server-side dynamic form is not prepopulated.

Each data subgroup must contain XML elements that match the field names in the subform. The detail 
subform located in the form design contains the following fields:

● txtPartNum

● txtDescription

● numQty

● numUnitPrice

Rendering prepopulated dynamic forms
You use the Form Server Module API to create applications that render server-side dynamic forms. Because 
the data that is placed into a server-side dynamic form is obtained at run-time, you must prepopulate a 
dynamic form by creating an in-memory XML data source and placing the data directly into the 
in-memory XML data source.

Consider the example of a web-based online store. After a user is finished purchasing items, all the 
purchased items are placed into an in-memory XML data source that is used to prepopulate the dynamic 
form. The following diagram shows this process, which is explained in the table following the diagram. 

4



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Creating an in-memory XML data source     83

The following table describes the steps in this diagram.
 

Creating an in-memory XML data source

You can use Java DOM classes to create an in-memory XML data source. This task is necessary if you are 
creating an application, such as a web-based online store, that receives data at run-time and uses the data 
to prepopulate a dynamic form. The data must be placed into an XML data source that conforms to the 
form. For information about the relationship between a dynamic form and the XML data source, see “XML 
data source” on page 80.

The following process describes one way to create an in-memory XML data source:

1. Create a Java DocumentBuilderFactory object by calling the DocumentBuilderFactory class’ 
newInstance method.

2. Create a Java DocumentBuilder object by calling the DocumentBuilderFactory object’s 
newDocumentBuilder method.

3. Call the DocumentBuilder object’s newDocument method to instantiate a Java Document object.

4. Create the XML data source’s root element by calling the Document object’s createElement 
method. This creates an Element object that represents the root element. Pass a string value 
representing the name of the element to the createElement method. Cast the return value to 
Element. Next, append the root element to the document by calling the Document object’s 
appendChild method, and pass the root element object as an argument. The following lines of code 
shows this application logic:

Element root = (Element)document.createElement("transaction");
document.appendChild(root);

5. Create the XML data source’s header element by calling the Document object’s createElement 
method. Pass a string value representing the name of the element to the createElement method. 
Cast the return value to Element. Next, append the header element to the root element by calling the 
the root object’s appendChild method, and pass the header element object as an argument. The 
XML elements that are appended to the header element correspond to the static portion of the form. 
The following lines of code shows this application logic:

Element header = (Element)document.createElement("header");
root.appendChild(header);

6. Create a child element that belongs to the header element by calling the Document object’s 
createElement method, and pass a string value that represents the element’s name. Cast the return 
value to Element. Next, set a value for the child element by calling its appendChild method, and 
pass the Document object’s createTextNode method as an argument. Specify a string value that 

1 A user purchases items from a web-based online store. The online store is implemented as a Java 
servlet that uses the Form Server Module API.

2 After the user finishes purchasing items and clicks the Submit button, an in-memory XML data 
source is created. Purchased data items and user information are placed into the in-memory XML 
data source. 

3 The XML data source is used to prepopulate a dynamic purchase order form. 

4 The dynamic purchase order form is rendered to the client web browser. For an example of a 
dynamic purchase order form, see “About dynamic forms” on page 79.



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Creating an in-memory XML data source     84

appears as the child element’s value. Finally, append the child element to the header element by 
calling the header element’s appendChild method, and pass the child element object as an 
argument. The following lines of code shows this application logic:

Element poNum= (Element)document.createElement("txtPONum");
poNum.appendChild(document.createTextNode("8745236985"));
header.appendChild(LastName);

7. Add all remaining elements to the header element by repeating step 6 for each field appearing in the 
static portion of the form (in the XML data source diagram, these fields are shown in section A).

8. Create the XML data source’s detail element by calling the Document object’s createElement 
method. Pass a string value representing the name of the element to the createElement method. 
Cast the return value to Element. Next, append the detail element to the root element by calling the 
the root object’s appendChild method, and pass the detail element object as an argument. The XML 
elements that are appended to the detail element correspond to the dynamic portion of the form. The 
following lines of code shows this application logic:

Element detail = (Element)document.createElement("detail");
root.appendChild(detail);

9. Create a child element that belongs to the detail element by calling the Document object’s 
createElement method, and pass a string value that represents the element’s name. Cast the return 
value to Element. Next, set a value for the child element by calling its appendChild method, and 
pass the Document object’s createTextNode method as an argument. Specify a string value that 
appears as the child element’s value. Finally, append the child element to the detail element by calling 
the detail element’s appendChild method, and pass the child element object as an argument. The 
following lines of code shows this application logic:

Element txtPartNum = (Element)document.createElement("txtPartNum");
txtPartNum.appendChild(document.createTextNode("00010-100"));
detail.appendChild(txtPartNum);

10. Repeat step 9 for all XML elements to append to the detail element. To properly create the XML data 
source used to populate the purchase order form, you must append the following XML elements to the 
detail element: txtDescription, numQty, and numUnitPrice.

11. Repeat steps 9 and 10 for all dynamic data items that you want to populate the form with.

The following code example shows a custom method named GetXMLDataSource that creates an 
in-memory XML data source that can prepopulate a dynamic form. The method returns a Document 
object.

Example 4.1 Creating an in-memory XML data source

public Document GetXMLDataSource()
{
Document document = null;
try {
//Create DocumentBuilderFactory and DocumentBuilder objects
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

//Create a new Document object
Document document = builder.newDocument(); 

//Create the root element and append it to the XML DOM
Element root = (Element)document.createElement("transaction");



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Creating an in-memory XML data source     85

document.appendChild(root);

//Create the header element
Element header = (Element)document.createElement("header");
root.appendChild(header);

//Create the txtPONum element and append it to the header element
Element txtPONum = (Element)document.createElement("txtPONum");
txtPONum.appendChild(document.createTextNode("8745236985"));
header.appendChild(txtPONum);

//Create the dtmDate element and append it to the header element
Element dtmDate = (Element)document.createElement("dtmDate");
dtmDate.appendChild(document.createTextNode("2004-02-08"));
header.appendChild(dtmDate);

//Create the txtOrderedByCompanyName element and append it to
//the header element
Element txtOrderedByCompanyName =
(Element)document.createElement("txtOrderedByCompanyName");
txtOrderedByCompanyName.appendChild(document.createTextNode("Any Company
Name"));
header.appendChild(txtOrderedByCompanyName);

//Create the txtOrderedByAddress element and append it to the header element
Element txtOrderedByAddress = 
(Element)document.createElement("txtOrderedByAddress");
txtOrderedByAddress.appendChild(document.createTextNode("555, Any Blvd"));
header.appendChild(txtOrderedByAddress);

//Create the txtOrderedByCity element and append it to the header element
Element txtOrderedByCity = 
(Element)document.createElement("txtOrderedByCity");
txtOrderedByCity.appendChild(document.createTextNode("Any City"));
header.appendChild(txtOrderedByCity);

//Create the txtOrderedByStateProv element and append it to the header element
Element txtOrderedByStateProv = 
(Element)document.createElement("txtOrderedByStateProv");
txtOrderedByStateProv.appendChild(document.createTextNode("ST"));
header.appendChild(txtOrderedByStateProv);

//Create the txtOrderedByZipCode element and append it to the header element
Element txtOrderedByZipCode = 
(Element)document.createElement("txtOrderedByZipCode");
txtOrderedByZipCode.appendChild(document.createTextNode("12345"));
header.appendChild(txtOrderedByZipCode);

//Create the txtOrderedByCountry element and append it to the header element
Element txtOrderedByCountry = 
(Element)document.createElement("txtOrderedByCountry");
txtOrderedByCountry.appendChild(document.createTextNode("Any Country"));
header.appendChild(txtOrderedByCountry);

//Create the detail element and append it to the root



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Creating an in-memory XML data source     86

Element detail = (Element)document.createElement("detail");
root.appendChild(detail);

//Create the txtPartNum element and append it to the detail element
Element txtPartNum = (Element)document.createElement("txtPartNum");
txtPartNum.appendChild(document.createTextNode("00010-100"));
detail.appendChild(txtPartNum);

//Create the txtDescription element and append it to the detail element
Element txtDescription = (Element)document.createElement("txtDescription");
txtDescription.appendChild(document.createTextNode("Monitor"));
detail.appendChild(txtDescription);

//Create the numQty element and append it to the detail element
Element numQty = (Element)document.createElement("numQty");
numQty.appendChild(document.createTextNode("1"));
detail.appendChild(numQty);

//Create the numUnitPrice element and append it to the detail element
Element numUnitPrice = (Element)document.createElement("numUnitPrice");
numUnitPrice.appendChild(document.createTextNode("350.00"));
detail.appendChild(numUnitPrice);

//Create another detail element named detail2 and append it to root
Element detail2 = (Element)document.createElement("detail");
root.appendChild(detail2);

//Create the txtPartNum element and append it to the detail2 element
Element txtPartNum2 = (Element)document.createElement("txtPartNum");
txtPartNum2.appendChild(document.createTextNode("00010-200"));
detail2.appendChild(txtPartNum2);

//Create the txtDescription element and append it to the detail2 element
Element txtDescription2 = (Element)document.createElement("txtDescription");
txtDescription2.appendChild(document.createTextNode("Desk lamps"));
detail2.appendChild(txtDescription2);

//Create the numQty element and append it to the detail2 element
Element numQty2 = (Element)document.createElement("numQty");
numQty2.appendChild(document.createTextNode("3"));
detail2.appendChild(numQty2);

//Create the NUMUNITPRICE element
Element numUnitPrice2 = (Element)document.createElement("numUnitPrice");
numUnitPrice2.appendChild(document.createTextNode("55.00"));
detail2.appendChild(numUnitPrice2);
// end of in-memory XML data source
}

catch (Exception ee)
{

System.out.println(ee); 
}
return document;
}



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Converting the XML data source to a byte array     87

Java import statements

The following Java import statements must be added to your Java project to successfully compile this 
code example: 

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Node;
import org.w3c.dom.Element;
import javax.xml.parsers.*;

XML data source

The previous code example creates a subset of the XML data source shown earlier in the chapter. The 
element values are hard-coded for simplicity. Typically, these values are stored in variables and are then 
assigned to XML elements. The following diagram shows the XML data source that is created by this code 
example.

To see the purchase order form prepopulated with this XML data source, see “Dynamic purchase order 
form” on page 90.

Converting the XML data source to a byte array

An in-memory XML data source that is created by using Java DOM classes must be converted to a byte 
array before it can be used to prepopulate a form. The byte array is assigned to the renderForm method’s 
cData parameter. An in-memory XML data source can be converted to a byte array by using Java XML 
transform objects.

The following code example shows a custom method named ConvertDOM that requires a Document 
object as an argument, uses Java XML transform classes to convert the Document object to a byte array, 
and returns the byte array. 



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Converting the XML data source to a byte array     88

Example 4.2 Converting an in-memory XML data source to a byte array

public byte[] ConvertDOM(Document doc)
{
//Declare a byte array
byte[] mybytes = null ; 
try

{
// Create a Java Transformer object
TransformerFactory transFact = TransformerFactory.newInstance();
Transformer transForm = transFact.newTransformer(); 

// Create a Java ByteArrayOutputStream object
ByteArrayOutputStream myOutStream = new ByteArrayOutputStream(); 

//Create a Java Source object
Source myInput = new DOMSource(doc);

//Create a Java Result object
Result myOutput = new StreamResult(myOutStream); 

//Populate the Java ByteArrayOutputStream object
transForm.transform(myInput,myOutput);

// Get the size of the ByteArrayOutputStream buffer
int myByteSize = myOutStream.size();

//Allocate myByteSize to the byte array
mybytes = new byte[myByteSize];

// Copy the content to the byte array
mybytes = myOutStream.toByteArray();

}
catch (Exception e)

{
System.out.println(e) ; 
}

return mybytes ; 
}

Java import statements

The following Java import statements must be added to your Java project to successfully compile this 
code example: 

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Rendering a prepopulated dynamic form     89

Rendering a prepopulated dynamic form

You can use the Form Server Module API to render a prepopulated dynamic form. The form design that is 
rendered in this section is named PurchaseOrder.xdp. The difference between rendering a static 
prepopulated form and rendering a dynamic prepopulated form is creating the XML data source that is 
used to prepopulate the dynamic form. For information about rendering a prepopulated form, see 
“Rendering prepopulated forms” on page 68.

The following code example prepopulates the purchase order dynamic form by creating an in-memory 
XML data source, converting the XML data source to a byte array, and assigning the byte array to the 
renderForm method’s cData parameter.

Example 4.3 Rendering a prepopulated dynamic form

public void doPost(HttpServletRequest req, HttpServletResponse resp)throws
ServletException, IOException {

//Create an EJBClient object
EJBClient formServer = new EJBClient();

// Declare local variables to pass to renderForm
String sFormName = "PurchaseOrder.xdp"; //Defines the form design
String sFormPreference = "PDF";
String sApplicationWebRoot = "http://<AppServer>:<AppPort>/LoanApp";
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
try{

// Create an in-memory XML data source
Document mydoc = GetXMLDataSource(); 

//Populate the cData parameter by calling ConvertDOM. Pass the 
//Document object
byte[] cData = ConvertDOM(mydoc);

IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,            //sFormPreference
 cData,                   //cData, 
 "CacheEnabled=False",//sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sApplicationWebRoot, //sApplicationWebRoot
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes



Adobe LiveCycle Forms Rendering Dynamic Forms
Developing Custom Applications  Rendering a prepopulated dynamic form     90

byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx);
}
}//end of doPost

Dynamic purchase order form

This code example calls the two custom methods that are created in this chapter. GetXMLDataSource is 
called to create an in-memory XML data source that is used to prepopulate the purchase order dynamic 
form. For information about this XML data source, see “Creating an in-memory XML data source” on 
page 83.

The custom method, convertDOM, is called to transform the in-memory XML data source to an array of 
bytes. The array of bytes is assigned to the renderForm method’s cData parameter. The following 
diagram shows the purchase order form after it is prepopulated with the XML data source created in this 
chapter.

Note: Because the in-memory XML data source that is created in this chapter contains limited data, not all 
of the fields in this form are prepopulated. To see this form completely filled in, see “About dynamic 
forms” on page 79.



     91

5 Rendering Forms as HTML

This chapter explains how you can use the Form Server Module API to render forms that are displayed as 
HTML to client devices, typically web browsers. A form is rendered in response to a request made by a 
client device. For example, the Form Server Module can render a form that is displayed as HTML in 
response to an HTTP request that is initialized from a web browser.

This chapter contains the following information.

Client applications rendering HTML forms
The Form Server Module can render forms in HTML format as opposed to PDF. A benefit of rendering a 
form as HTML is that the computer on which the client web browser is located does not require Adobe 
Reader or Acrobat. For information about LiveCycle Forms rendering forms as PDF, see “Rendering 
Interactive Forms as PDF” on page 48.

Consider a client web browser sending an HTTP request to a client application requesting a form that is 
displayed as HTML. When the application receives the HTTP request, it sends the request to the Form 
Server Module, which then renders the form to the client web browser within an HTTP response. This 
process is shown in the following diagram.

Note: This diagram shows a client application and the LiveCycle Forms existing on the same J2EE 
application server. You can deploy a client application to a separate J2EE application server and 
remotely invoke the Form Server Module. For information, see “Remotely invoking Form Server 
Module” on page 32.

Topic Description See

client applications rendering HTML 
forms

Describes the characteristics of a client application 
that renders HTML forms. 

page 91

Rendering a form as HTML Covers the methods you can use to render a form to a 
client web browser. 

page 92

Form 

A form displayed as HTML



Adobe LiveCycle Forms Rendering Forms as HTML
Developing Custom Applications  Form considerations     92

Form considerations

For the Form Server Module to render a form as HTML, you must save a form design as an .xdp file. If you 
attempt to render a form as HTML that is based on a form design saved as a .pdf file, you will cause a 
RenderFormException.

When developing a form design in LiveCycle Designer that will be rendered as HTML, consider the 
following criteria:

● Do not use an object's border properties to draw lines, boxes, or grids on your form. Some browsers 
may not line up borders exactly as they appear in a LiveCycle Designer preview. Objects may appear 
layered or may push other objects off their expected position.

● You can use lines, rectangles, and circles to define the background.

● Draw text slightly larger than what seems to be required to accommodate the text. Some web 
browsers do not display the text legibly.

For more information about creating form designs to render as HTML, see “Designing form designs to 
render as HTML” on page 18. 

Rendering a form as HTML 
Using the Form Server Module API, you create application logic to render a form that is displayed as HTML 
to a client web browser as part of an HTTP response. To render a form that is displayed as HTML, create an 
EJBClient object (or a SOAPClient object) and call its renderForm method. The renderForm 
method returns an IOutputContext interface. You use this interface to populate a data stream with the 
form and then send the data stream to the client web browser within an HTTP response.

In addition to using the Form Server Module API, you also use standard Java classes. These classes enable 
you to perform necessary tasks, such as creating a data stream to send to the client web browser. 

You specify the form design to render by setting the renderForm method’s sFormQuery parameter. For 
information, see “Specifying the form design to render” on page 53.

Note: Before you render a form, it is recommended that you are familiar with invoking the Form Server 
Module. For information, see “Invoking the Form Server Module” on page 30.

Setting preference options to render the form as HTML 

You can render a form as HTML by using a form design that was created in LiveCycle Designer and saved as 
an .xdp file. Set the renderForm method’s sFormPreference parameter to one of the following values:

● MSDHTML—Renders the form as dynamic HTML for Internet Explorer 5.0 or later

● HTML4—Renders the form as HTML compatible with older browsers that do not support absolute 
positioning of HTML elements.

● AHTML—Compatible with accessibility enhanced web browsers (currently Internet Explorer 5.0 or 
later).

● StaticHTML—Renders the form as read-only HTML. This option was added to LiveCycle Forms 7.1.

● CSS2HTML—Compatible with CSS2 specification.



Adobe LiveCycle Forms Rendering Forms as HTML
Developing Custom Applications  Specifying the client applications web context     93

These options are used to render the form as HTML. To view the renderForm method’s 
sFormPreference values that are used to render the form as PDF, see “Setting preference options to 
render the form as PDF” on page 53. 

Note: AHTML and CSS2HTML are compliant with XHTML 1.0. For information, go to 
www.w3.org/TR/xhtml1/. 

Specifying the client applications web context 

You set the renderForm method’s sApplicationWebRoot with a string value that specifies the web 
context of the client application that is deployed to a J2EE application server. This value is combined with 
sTargetURL to construct an absolute URL to access application-specific web content. Typically, this value 
is a URL value, as shown in the following example:

String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp";

Caching HTML forms

To cache an HTML form, assign the renderForm method’s sOptions parameter with the following string 
value:

CacheEnabled=True

For more information, see “Caching PDF forms” on page 54. 

In addition to using the Form Server Module API, you must also enable form caching in LiveCycle Designer. 
For information see, LiveCycle Designer Help.

 Creating application logic to render a form as HTML

The following process describes how to render a form as HTML to a client web browser:

1. Create an EJBClient object by calling the EJBClient constructor. For information, see “Locally 
invoking Form Server Module” on page 31.

2. Call the EJBClient object’s renderForm method and set its parameters (this is shown in the 
example that follows this process. This method returns an IOutputContext interface.

3. Create a Java ServletOutputStream object used to send a byte stream to the client web browser. 

4. Set the Java HttpServletResponse object’s content type to match the IOutputContent object’s 
content value. You can achieve this by calling the HttpServletResponse object’s 
setContentType method and passing the IOutPutContent object’s getContentType return 
value:

HttpServletResponseOb.setContentType(OutputContextOb.getContentType());

5. Create a byte array and populate it by calling the IOutputContent object’s getOutputContent 
method. This task assigns the content of the IOutputContent object to a byte array. The following 
line of code shows this application logic:

byte[] cContent = OutputContextOb.getOutputContent();

6. Call the HttpServletResponse object’s write method to send a data stream to the client web 
browser. Pass the byte array to the write method. 

http://www.w3.org/TR/xhtml1/


Adobe LiveCycle Forms Rendering Forms as HTML
Developing Custom Applications  Creating application logic to render a form as HTML     94

The following code example renders a form named Loan.xdp to a client web browser.

Example 5.1 Rendering a form as HTML to a client web browser

//Create a EJBClient object
EJBClient formServer = new EJBClient();

//Declare and populate local variables to pass to renderForm
String sFormQuery = "Loan.xdp";       //Defines the form design to render
String sFormPreference = "MSDHTML";       //Defines the preference option
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
String sTargetURL = "http://<AppServer>:<AppPort/LoanApp>/HandleData";
String sApplicationWebRoot = "http://<AppServer:<AppPort>/LoanApp";
byte[] cData = new byte[0]; //cData

try{
//Call renderForm
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,        //sFormPreference
 cData ,                    //cData, 
 "CacheEnabled=true", //Enable caching
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sContentRootURI,      //sContentRootURI
 null                    //sBaseURL
  );

// Create a ServletOutputStream object
ServletOutputStream oOutput = resp.getOutputStream();

//Set the HTTPResponse object’s content type
resp.setContentType(myOutputContext.getContentType());

// Get the length of the output stream
int outLength = myOutputContext.getOutputContent().length; 

//Create a byte array and allocate outLength bytes
byte[] cContent = new byte[outLength]; 

//Populate the byte array by invoking getOutputContext
cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
oOutput.write(cContent);

}
//Catch a thrown exception
catch (Exception ioEx)
{

System.out.println("Exception error is: " +ioEx.getMessage());
}

Note: This example shows how to render a form by locally invoking the Form Server Module. You can use 
an EJBClient object to remotely invoke the Form Server Module. For information, see “Remotely 
invoking Form Server Module” on page 32.



     95

6 Calculating Form Data

This chapter explains how you can calculate data that is located in a form. Assume, for example, that a user 
enters values into an interactive form and clicks a calculate button. The Form Server Module can calculate 
the values and display the result in the form. To calculate form data, you must perform two tasks. First, you 
create a form design script that calculates form data. A form design supports three types of scripts. One 
script type runs on the client, another runs on the server, and the third type runs on both the server and 
the client. The script type discussed in this chapter runs on the server. 

Second, you use the Form Server Module API to create a client application that handles a form design that 
contains an embedded script. The fact that a form design contains calculations does not affect how you 
use the Form Server Module API. It is important to note that the Form Server Module API does not actually 
calculate or manipulate data. It simply handles and returns a form that contains a script that performs 
calculations.

This chapter contains the following information.
  

Note: It is recommended that you are familiar with using the Form Server Module API to render forms 
before you read this chapter. For information, see “Rendering Interactive Forms as PDF” on page 48

About form design scripts
As part of the form design process, you can make use of calculations and scripts to provide a richer user 
experience. Calculations and scripts can be added to most form fields and objects. You must create a form 
design script to perform calculation operations on data that a user enters into an interactive form. 

When data is submitted from a client web browser to LiveCycle Forms, it can be submitted as XML data or 
PDF data. The content type of data that is submitted as XML is text/xml. In contrast, the content type of 
data that is submitted as PDF is application/pdf. You use LiveCycle Designer to determine if data is 
submitted as PDF or XML. For information, see LiveCycle Designer Help. 

Typically, a form that is submitted as PDF will contain scripts that are executed on the client. However, 
server-side calculations can also be executed without a problem. A Submit button cannot be used to 
calculate scripts. In this situation, calculations are not executed because the Form Server Module considers 
the interaction to be complete. For information, see “Using Form Design buttons” on page 23.

Topic Description See

About form design scripts Describes a form design that contains a script that runs 
on the server.

page 95

Handling a form containing 
a script

Describes how to use the Form Server Module API to 
create application logic that handles a form containing 
a script.

page 96



Adobe LiveCycle Forms Calculating Form Data
Developing Custom Applications  Handling a form containing a script     96

To illustrate the usage of a form design script, this section examines a simple interactive form that contains 
a script that is configured to run on the server. The following diagram shows a form design containing a 
script that adds values that a user enters into the first two fields and displays the result in the third field.

The syntax of the script located in this form design is as follows:

NumericField3 = NumericField2 + NumericField1

In this form design, the Calculate button is a command button, and the script is located in this button’s 
Click event. When a user enters values into the first two fields (NumericField1 and NumericField2) and 
clicks the Calculate button, the form is sent to the Form Server Module, where the script is executed. The 
Form Server Module renders the form back to the client device with the results of the calculation displayed 
in the NumericField3 field. For information about how the Form Server Module executes scripts, see “Using 
Form Design buttons” on page 23.

For information about creating a form design script, see the LiveCycle Designer Help. 

Handling a form containing a script
You use the Form Server Module API to create application logic that handles a form design containing a 
script configured to run on the server. Consider a client application that lets a user fill in a form with data 
required to secure a loan. To assist the user, assume that the loan form contains a calculate button and 
fields that enable a user to enter data, such as an interest rate value and the number of months for which 
loan payments are made. 

The user enters values into the form and clicks the Calculate button to view the results. The following 
process describes the application: 

● The user accesses an HTML page named StartLoan.html that functions as the web application’s start 
page. This page invokes a Java servlet named GetLoanForm.

● The GetLoanForm servlet renders a loan form. This form contains a script, interactive fields, a calculate 
button, and a submit button.

● The user enters values into the form’s fields and clicks the Calculate button. The form is sent to the 
CalculateData Java servlet where the script is executed. The form is sent back to the user with the 
calculation results displayed in the form.

● The user continues entering and calculating values until a satisfactory result is displayed. When 
satisfied, the user clicks the Submit button to process the form. The form is sent to another Java servlet 
named ProcessForm that is responsible for retrieving submitted data. For information, see “Retrieving 
submitted form data” on page 60.

A field named NumericField1

A field named NumericField2

A field named NumericField3



Adobe LiveCycle Forms Calculating Form Data
Developing Custom Applications  Rendering a form that contains a script     97

The following diagram shows the application’s logic flow.

The following table describes the steps in this diagram.

Rendering a form that contains a script

The difference between rendering a form that contains a script configured to run on the server and 
rendering a form that does not contain a script is that you must specify the target location used to execute 
the script. If a target location is not specified, a script that is configured to run on the server is not 
executed.

For example, consider the application introduced in this section. The CalculateData Java servlet is the 
target location where the script is executed. 

To specify a target location, assign the renderForm method’s sTargetURL parameter a value that 
specifies the target location. For more information about this parameter, see “Specifying the target URL” 
on page 54. 

For information about rendering a form, see “Creating application logic to render a form as PDF” on 
page 57.

1 The GetLoanForm Java servlet is invoked from the StartLoan.html page. This page contains a link 
that invokes the GetLoanForm Java servlet.

2 The GetLoanForm Java servlet uses the Form Server Module API to render the loan form to the 
client web browser. For information, see “Rendering a form using an EJBClient object” on page 52.

3 The user enters data into interactive fields and clicks the Calculate button. The form is sent to the 
CalculateData Java servlet, where the script is executed. 

4 The form is rendered back to the web browser with the calculation results displayed in the form. 

5 The user clicks the Submit button when the values are satisfactory. The form is sent to another Java 
servlet named ProcessForm.

ProcessForm
(Java Servlet)Client Web Browser

GetLoanForm
(Java Servlet)

CalculateData
(Java Servlet)

3

2

1

J2EE Application Server

4

5



Adobe LiveCycle Forms Calculating Form Data
Developing Custom Applications  Creating application logic to handle a form containing a calculation script     98

Creating application logic to handle a form containing a calculation script

You use the Form Server Module API to create application logic that handles a form that contains a script 
configured to run on the server. Call the processFormSubmission method to retrieve the form. This 
method returns an IOutputContext interface that you use to retrieve the submitted form that contains 
a script.

You call the IOutputContext interface’s getFSAction method to determine the processing state 
associated with a submitted form. When a form is submitted for a script to be calculated, the 
getFSAction method returns the value 1. In this situation, a script configured to run on the server is 
automatically executed.

After you verify that getFSAction returns 1, you can create application logic to render the form back to 
the client web browser. When the form is displayed, the calculated value will appear in the appropriate 
field(s). 

Example 6.1 Handling a form containing a calculation script

//Create an EJBClient object and an IOutputContext interface 
EJBClient formServer = new EJBClient();
IOutputContext myOutputContext = null;

try{
  // Call processFormSubmission to handle the submitted data.Pass the
  // HttpServletRequest object
  myOutputContext = formServer.processFormSubmission(req,"OutputType=0"); 

  //Determine the processing state associated with the submitted form
  short fsAction = myOutputContext.getFSAction();

if (fsAction == 1)
{
 //Calculation results must be returned to the client web browser
 //Create a ServletOutputStream object
 ServletOutputStream oOutput = resp.getOutputStream();

 //Get the IOutputContext object's character set
 //Use this value to set the HttpServletResponse 
 //object's content type
 String charset = myOutputContext.getCharSet();

    
 if (charset == null || charset.length() == 0)

charset = "ISO88591";
 

 if (myOutputContext.getContentType().compareToIgnoreCase("text/html") == 
0)

   resp.setContentType (myOutputContext.getContentType() + "; charset=" + 
charset);

 else
resp.setContentType (myOutputContext.getContentType());



Adobe LiveCycle Forms Calculating Form Data
Developing Custom Applications  Creating application logic to handle a form containing a calculation script     99

//Create a byte array. Call the IOutputContext object's
//getOutputContext method
byte[] cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the Web browser
oOutput.write(cContent);
}

}
 

catch (Exception e)
{

e.printStackTrace();
}



     100

7 Working with PDF Form Fields 

This chapter explains how you can use the Form Server Module API to import and export data from fields 
located in an interactive form. This chapter also discusses how to manipulate form fields by converting 
them into page contents. This process is called flattening. After you flatten a form field, users cannot 
manipulate the field in Acrobat or Adobe Reader. That is, a user cannot enter data into a field after it is 
flattened. No operation is available to reverse this process.

Two types of PDF forms exist:

● An Acrobat form (created in Acrobat) is a PDF document that contains one or more form fields. The PDF 
document may also contain non-form content. An Acrobat form does not contain forms that conform 
to the XML Forms Architecture. 

● An XML form (typically created in LiveCycle Designer) is a PDF document that conforms to the PDF 1.5 
or 1.6 specification and contains form field information and possibly data that conforms to the XML 
Forms Architecture. 

This chapter contains the following information.

Importing form data
You can use the Form Server Module API to import data into an Acrobat form. This data can be in one of 
these formats:

● FDF is the normal Acrobat form data format.

● XFDF is an XML version of FDF. 

The following table shows which formats you can use for each type of form.

Topic Description See

Importing form data Explains how to import data into a form. page 100

Exporting form data Explains how to export data from a form. page 101

Flattening form fields Explains how to manipulate form fields by converting them into 
page contents.

page 102

Import 
formats Result Form type

Export 
formats Result

FDF & XFDF Successful Acrobat form FDF & XFDF Successful

FDF & XFDF InvalidFormDataFormat 
exception

XML form FDF & XFDF InvalidFormFormat 
exception

FDF & XFDF InvalidFormFormat 
exception

Not a form FDF & XFDF InvalidFormFormat 
exception



Adobe LiveCycle Forms Working with PDF Form Fields
Developing Custom Applications  Exporting form data     101

You can import FDF or XFDF data into an Acrobat form by creating an EJBClient object (or a 
SOAPClient object) and calling its renderForm method. Assign the following values to the 
renderForm method’s parameters:

● sFormQuery—References the Acrobat form for which data is imported.

● sFormPreference—Must be set to PDFMerge. 

● cData— Must be valid XFDF or FDF data as a byte array. For information, see “Rendering prepopulated 
forms” on page 68.

● sOptions—No specific options are required.

● sUserAgent—This value is not required. 

● sApplicationWebRoot—This value is not required. 

● sTargetURL—The target for the form submission. For information, see “Specifying the target URL” on 
page 54.

● sContentRootURI—The root URI where the source PDF is located.

● sBaseURL—This value is not required. 

The renderForm method returns an IOutputContent interface that you use to retrieve the PDF that 
contains FDF or XFDF data. For example, you can use the IOutputContent interface to save the PDF as a 
PDF file. For information, see “Saving a PDF document” on page 108.

Exporting form data
You can export form data from an Acrobat or an XML form by using the Form Server Module API. You can 
export XML data from an Acrobat form (designed using Acrobat) or an XML form (designed using 
LiveCycle Designer) by calling the EJBClient (or SOAPClient) object’s processFormSubmission 
method.

When a PDF is passed as the request buffer to the processFormSubmission method, with the option 
PDFtoXDP=1, the Form Server Module converts the PDF to its XML representation as XDP.

If the PDF is an Acrobat form, the XDP will contain an xfdf packet that will include the xfdf field data (fields) 
and annotations (annots). If the PDF is an XML form, the XDP will contain the data in the datasets packets 
and any annotations are contained in the xfdf packet.

To export form data, assign the following values to the processFormSubmission method’s 
parameters:

● cRequestBuffer—The PDF that contains data to export. This PDF can be an Acrobat form or an XML 
form.

● sEnvironmentBuffer—Must include the header CONTENT_TYPE=application/pdf. 

● sUserAgent—This value is not required and can be null. 

● sOptions—The value PDFtoXDP must be specified.

The processFormSubmission method returns an IOutputContent interface that you use to retrieve 
data that was exported from the form. Call the IOutputContent interface’s getOutputContent 
method to retrieve the form data. For information about retrieving data by using the 
processFormSubmission method, see “Creating application logic to retrieve submitted data” on 
page 62.



Adobe LiveCycle Forms Working with PDF Form Fields
Developing Custom Applications  Flattening form fields     102

Flattening form fields
Using the Form Server Module API, you can flatten form fields. You can only flatten form fields; you cannot 
flatten other types of annotations. To flatten form fields, create an EJBClient object (or a SOAPClient 
object) and call its renderForm method. Assign the following values to the renderForm method’s 
parameters:

● sFormQuery—The PDF that contains form fields to flatten.

● sFormPreference—Must be set to PDF. 

● cData—Must be valid FDF or XFDF XML specified as a byte array or a Document object..

● sOptions—No specific options required.

● sUserAgent—This value is not required.

● sApplicationWebRoot—This value is not required.

● sTargetURL— This value is not required.

● sContentRootURI—The root URI where the source PDF is located.

● sBaseURL—This value is not required.

The renderForm method returns an IOutputContent interface that you use to retrieve the PDF that 
contains flattened fields. The content type of PDF is application/pdf. Call the IOutputContent 
interface’s getContentType method to retrieve the content type.

For information about using the renderForm method to render a form as PDF, see “Rendering a form 
using an EJBClient object” on page 52.



     103

8 Transferring PDF Data

This chapter explains how you can programmatically transfer PDF data between LiveCycle Forms and 
other Adobe LiveCycle products that use the PDF Manipulation Module API, such as Adobe LiveCycle 
Document Security or Adobe LiveCycle Reader Extensions. To transfer PDF data, you use the Form Server 
Module API, the PDF Manipulation Module API, and the Data Manager Module API. For information about 
LiveCycle Document Security, see the LiveCycle Document Security Developer’s Guide. 

A client application that uses the Form Server Module API, the Data Manager Module API and the PDF 
Manipulation Module API must be deployed on the J2EE application server hosting LiveCycle Forms and 
the other LiveCycle products. The PDF Manipulation Module cannot be invoked remotely. 

This chapter also explains how to save a form that is submitted to LiveCycle Forms as a PDF file. To save a 
PDF file, you only need to use the Form Server Module API. Neither the Data Manager Module API nor the 
PDF Manipulation Module API are required.

This chapter contains the following information.
  

It is recommended that you are familiar with using the Form Server Module API to render forms before you 
read this chapter. For information, see “Rendering Interactive Forms as PDF” on page 48

About transferring data
A client application can consist of two or more Adobe LiveCycle APIs. Consider a client application that 
uses the Form Server Module API to invoke the Form Server Module and the PDF Manipulation Module API 
to invoke LiveCycle Document Security. Using these APIs, you can transfer PDF data from the LiveCycle 
Forms to LiveCycle Document Security.

Consider a web application that invokes the Form Server Module. After the Form Server Module renders 
an interactive form to a client web browser, the user fills in an interactive form and submits it back to the 
Form Server Module as PDF data. The option of submitting PDF data to LiveCycle Forms is specified in 
LiveCycle Designer. For information about rendering a form, see “Rendering a form using an EJBClient 
object” on page 52.

When the LiveCycle Forms receives the PDF data, it sends the data to LiveCycle Document Security, which 
uses the PDF Manipulation Module API. LiveCycle Document Security can encrypt the PDF data, save it as a 
PDF document, and store the document in an enterprise data source or a content management 
repository.

Topic Description See

About transferring data Describes the process of transferring data from one 
LiveCycle module to another.

page 103

Retrieving submitted PDF data Describes how to retrieve PDF data that is submitted 
from a client web browser and transfer the PDF data 
from LiveCycle Forms to LiveCycle Document Security.

page 105

Creating a PDF document Describes how to create a PDF document from data 
that is transferred from the Form Server Module. 

page 106



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Form design considerations     104

The following diagram shows the application’s logic flow.

The following table describes the steps in this diagram.

Form design considerations

When data is submitted from a client web browser to LiveCycle Forms, it can be submitted as XML or PDF 
data. For LiveCycle Forms to transfer data to LiveCycle Document Security, the data must be submitted as 
PDF data. If data is submitted as XML, it cannot be transferred to the PDF Manipulation Module. The 
content type of submitted PDF data is application/pdf. In contrast, the content type of submitted 
XML data is text/xml.

The form design must be configured correctly in LiveCycle Designer in order to submit PDF data. To 
properly configure the form design to submit PDF data, ensure that the Submit button that is located on 
the form design is configured to submit PDF data. For information about configuring the Submit button, 
see the LiveCycle Designer Help.

Note: A form design can be saved as a PDF file or an XDP file. The important factor is that the Submit 
button is configured to submit PDF data, not whether the form design is saved as a PDF file or an 
XDP file.

1 A web page contains a link that accesses a Java servlet that invokes LiveCycle Forms.

2 LiveCycle Forms renders a form to the client web browser.

3 The user fills in an interactive form and clicks a submit button. The form is submitted back to 
LiveCycle Forms as PDF data This option is set in LiveCycle Designer.

4 LiveCycle Forms transfers the PDF data to LiveCycle Document Security, which uses the PDF 
Manipulation Module API.

5 The PDF Manipulation Module API is used to encrypt the PDF data and save it as a PDF document. 
The client application uses a separate API to store the secured PDF document in a content 
management repository.

Submits PDF form data Transfers PDF form data Secures the PDF document



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Retrieving submitted PDF data     105

Retrieving submitted PDF data
After a user fills in an online form and submits PDF data, your client application must retrieve the PDF data 
before it can transfer it to LiveCycle Document Security. 

The Form Server Module API contains methods that enable you to retrieve PDF data submitted from a 
form. The IFormServer interface’s processFormSubmission method must be called to retrieve 
submitted data. This method returns an IOutputContext interface that you can use to retrieve the 
submitted data.

To transfer PDF data from LiveCycle Forms to LiveCycle Document Security, you must write the PDF data to 
a temporary file. Before you populate the temporary file with the PDF data, ensure that the submitted data 
is PDF data. To perform this task, call the IOutputContext interface’s getContentType method. This 
method returns a string value that specifies the content type of the submitted data. If the submitted data 
is PDF data, the return value is application/pdf. 

Create a temporary file by instantiating a Java File object by using its public constructor. Populate the 
File object with the submitted PDF data. To perform this task, call the IOutputContext interface’s 
getOutputContent method. This method returns a byte array that contains the PDF data.

Write the byte array contents to the temporary file by using a Java FileOutputStream object. Call this 
object’s write method and pass the byte array. The PDF Manipulation API references this temporary file 
to create a PDFDocument object. For information, see “Creating a PDF document” on page 106.

Example 8.1 Retrieving submitted PDF data

//Create an EJBClient object, which implements IFormServer
EJBClient formServer = new EJBClient();

// Call processFormSubmission to handle the submitted PDF data. Pass the
// HttpServletRequest object 
IOutputContext outputContext = 
formServer.processFormSubmission(req,"OutputType=0"); 

//Determine the content type -- make sure it is application/pdf
String ct  = outputContext.getContentType(); 

if (ct.equals("application/pdf"))
{

 //Get the binary PDF data
 byte [] formOutput = outputContext.getOutputContent();

//Create a temporary File object
File tempFile = new File("C:\\tempData.dat");

//Create a Java FileOutputStream object
FileOutputStream myOutput = new FileOutputStream(tempFile) ; 

//Write the byte array contents to the file
myOutput.write(formOutput); 
myOutput.close(); 

}



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Creating a PDF document     106

Note: There are a few points to consider about the previous code example. First, assume that this code 
example is located in a Java servlet method that has an HttpServletRequest object as an 
argument. This object is passed to the processFormSubmission method. Second, this code 
example is located within a try statement and has corresponding catch statements. For 
simplicity, these statements are removed. Third, the temporary file is named tempData.dat and is 
stored in the root of C:\.

Creating a PDF document
You can create a PDFDocument object from a temporary file containing PDF data by using the Data 
Manager Module API and the PDF Manipulation Module API. After you create a PDFDocument object, you 
can perform PDF manipulation tasks, such as encrypting the PDF document. For information, see the 
LiveCycle Document Security Developer’s Guide.

To create a PDFDocument object, it is necessary to create a FileDataBuffer object. The 
FileDataBuffer interface belongs to the Data Manager Module API. To create a FileDataBuffer 
object, call the DataManager object’s createFileDataBuffer method (or 
createFileDataBufferFromUrl). For information about the FileDataBuffer interface, see the 
Form Server Module API Reference. 

In addition to using a DataManager object, you use two standard Java classes, InitialContext and 
PortableRemoteObject, to perform a Java JNDI look-up operation. Using these classes, you create a 
CORBA object representing a connection to the PDF Manipulation service (part of LiveCycle Document 
Security).

You can create a PDFDocument object by performing the following programmatic tasks within a Java 
project:

1. Create a DataManager object (the import statements required to create this object are required to 
create a PDFManipulation object). The DataManager object used in this example is named 
mDataManager. For information, see “Invoking the Data Manager Module” on page 40.

2. Create an InitialContext object by using the InitialContext constructor:

InitialContext pdfnamingContext = new InitialContext();

3. Perform a JNDI look-up by calling the InitialContext object’s lookup method and pass the string 
PDFManipulation as an argument. Store the return value in an Object variable. The following line 
of code shows this application logic:

Object pdfObject = namingContext.lookup("PDFManipulation");

4. Create a ConnectionFactory object by calling the PortableRemoteObject object’s static 
narrow method. This method determines if the return value of the look-up method can be cast to a 
ConnectionFactory object. Cast the return value to ConnectionFactory. The following line of 
code shows this application logic:

ConnectionFactory pdfConnectionFactory = (ConnectionFactory)
PortableRemoteObject.narrow(pdfObject,ConnectionFactory.class);



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Creating a PDF document     107

5. Create a PDFFactory object by calling the PDFFactoryHelper object’s static narrow method (it is 
unnecessary to instantiate a PDFFactoryHelper object). Pass the ConnectionFactory object to 
this method and call its getConnection method. Cast the return value to 
org.omg.CORBA.Object. The following line of code shows this application logic:

PDFFactory mPDFFactory =
PDFFactoryHelper.narrow((org.omg.CORBA.Object)pdfConnectionFactory.
getConnection());

6. Create a FileDataBuffer object by calling the DataManager object’s createFileDataBuffer 
method. Reference the temporary data file that contains PDF data (this file was created in the previous 
section). The following line of code shows this application logic:

FileDataBuffer pdfFile =
mDataManager.createFileDataBuffer("C:\\tempData.dat");

7. Create a PDFDocument object by calling the PDFFactory object’s openPDF method and pass the 
FileDataBuffer object:

PDFDocument pdf = mPDFFactory.openPDF(pdfFile);

The following code example shows how to create a PDFDocument object by using a DataManager 
object named mDataManager.

Example 8.2 Creating a PDFDocument object using a temporary file containing PDF data

//Declare a ConnectionFactory object
ConnectionFactory pdfConnectionFactory = null;

//Lookup the PDF Manipulation service
Object pdfObject = namingContext.lookup("PDFManipulation");
pdfConnectionFactory = (ConnectionFactory)

PortableRemoteObject.narrow(pdfObject,ConnectionFactory.class);

//Use the pdfConnectionFactory object to create a PDFFactory object
PDFFactory mPDFFactory =

PDFFactoryHelper.narrow((org.omg.CORBA.Object)pdfConnectionFactory.
getConnection());

//Create a FileDataBuffer object to store an existing PDF document by 
//calling the DataManager object’s createFileDataBuffer method. 
//Reference the tempData.dat file

FileDataBuffer pdfFile =
mDataManager.createFileDataBuffer("C:\\tempData.dat");

//Create a PDFDocument object by using the PDFFactory object’s 
//openPDF method and passing the FileDataBuffer object
PDFDocument pdf = mPDFFactory.openPDF(pdfFile);

For more information about creating a FileDataBuffer object, see “Invoking the Data Manager 
Module” on page 40.



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Saving a PDF document     108

Saving a PDF document
Instead of transferring PDF data to another LiveCycle product, you can save PDF data as a PDF file. For 
example, consider the application introduced earlier in this chapter. When LiveCycle Forms receives a form 
that is submitted as PDF data, the form can be saved as a PDF file. You can then view the form using 
Acrobat or Adobe Reader.

The following diagram shows the application’s logic flow.

The following table describes the steps in this diagram.

For LiveCycle Forms to save the PDF data as a PDF file, the data must be submitted as PDF data. If a form is 
submitted as XML, it cannot be saved as a PDF file. The content type of submitted PDF data is 
application/pdf. In contrast, the content type of submitted XML data is text/xml.

The Form Server Module API contains methods that enable you to retrieve PDF data submitted from a 
form. The IFormServer interface’s processFormSubmission method must be called. This method 
returns an IOutputContext interface that you can use to retrieve the submitted data.

To save PDF data that is submitted to LiveCycle Forms, you write the PDF data to a Java File object. 
Before you write PDF data to the Java File object, ensure that the submitted data is PDF data. To perform 
this task, call the IOutputContext interface’s getContentType method. This method returns a string 
value that specifies the content type of the submitted data. If the submitted data is PDF data, the return 
value is application/pdf. 

Create a Java File object by using its public constructor. Be sure to specify .pdf as the file name extension. 
Populate the File object with the submitted PDF data. To perform this task, call the IOutputContext 
interface’s getOutputContent method. This method returns a byte array that contains the PDF data.

1 A web page contains a link that accesses a Java servlet that invokes LiveCycle Forms.

2 LiveCycle Forms renders a form to the client web browser.

3 The user fills in an interactive form and clicks a submit button. The form is submitted back to 
LiveCycle Forms as PDF data. This option is set in LiveCycle Designer.

4 LiveCycle Forms saves the PDF data as a PDF file. 



Adobe LiveCycle Forms Transferring PDF Data
Developing Custom Applications  Saving a PDF document     109

Write the byte array contents to the Java File by using a Java FileOutputStream object. Call this 
object’s write method and pass the byte array. 

Example 8.3 Saving a PDF document

//Create an EJBClient object, which implements IFormServer
EJBClient formServer = new EJBClient();

// Call processFormSubmission to handle the submitted PDF data. Pass the
// HttpServletRequest object 
IOutputContext outputContext = 
formServer.processFormSubmission(req,"OutputType=0"); 

//Determine the content type -- make sure it is application/pdf
String ct  = outputContext.getContentType(); 

if (ct.equals("application/pdf"))
{

 //Get the binary PDF data
 byte [] formOutput = outputContext.getOutputContent();

//Create a pdf File object
File tempFile = new File("C:\\myPDF.pdf");

//Create a Java FileOutputStream object
FileOutputStream myOutput = new FileOutputStream(tempFile) ; 

//Write the byte array contents to the file
myOutput.write(formOutput); 
myOutput.close(); 

}

Note: There are a couple of points to consider about the previous code example. First, assume that this 
code example is located in a Java servlet method that has an HttpServletRequest object as an 
argument. This object is passed to the processFormSubmission method. Second, this code 
example is located within a try statement and has corresponding catch statements. For 
simplicity, these statements are removed. Third, the PDF file is named my PDF.pdf and is stored in 
the root of C:\.



     110

9 Authenticating Users

This chapter explains how you can use the User Manager API to programmatically authenticate users with 
Adobe User Management. User Manager allows administrators to maintain a database for all users and 
groups, synchronized with one or more third-party user directories. User Management provides 
authorization and user management for LiveCycle Forms. 

This chapter contains the following information.

Note: It is also possible to create custom service providers for User Management. For information about 
creating custom service providers, see the Developing User Management Service Providers guide.

About user authentication
Using the User Manager API, you can enable your LiveCycle Forms client application to authenticate users 
with User Manager. User authentication may be required to interact with an enterprise database or other 
enterprise repositories that store secure data.

Consider, for example, a scenario where a user enters a user name and password into a web page and 
submits the values to a J2EE application server hosting both LiveCycle Forms and a client application. A 
LiveCycle Forms client application can authenticate the user with User Manager. 

If the authentication is successful, the application accesses a secured enterprise database. Otherwise, a 
message is sent to the user stating that the user is not an authorized user. 

The following diagram shows the application’s logic flow.

Topic Description See

About user authentication Explains user authentication page 110

Performing user authentication Explains how to programmatically authenticate users page 111

User



Adobe LiveCycle Forms Authenticating Users
Developing Custom Applications  Performing user authentication     111

The following table describes the steps in this diagram:

Performing user authentication
You must use the User Manager API to authenticate a user with User Manager. 

To use the User Manager API, import the um-client.jar file into your Java project. The location of this JAR 
file is dependant upon the J2EE application server on which LiveCycle Forms is installed. For example, if 
LiveCycle Forms is installed on JBoss, you must use the um-client.jar file that is located in the jboss folder. 

The um-client.jar file can be located in one of the following folders:

● C:\Adobe\LiveCycle\components\um\jboss\lib\adobe\um-client.jar

● C:\Adobe\LiveCycle\components\um\websphere\lib\adobe\um-client.jar

● C:\Adobe\LiveCycle\components\um\weblogic\lib\adobe\um-client.jar

where C:\ is the drive on which you installed LiveCycle Forms. For information, see the Installing and 
Configuring guide for your application server.

Programmatically authenticating a user

To authenticate a user, you must create a UserManager object and invoke its authenticate method. 
This method requires the following arguments:

● A string value that represents the user name

● A byte array that represents the password

The authenticate method returns an AuthResult object if the authentication is successful. The fully 
qualified name of this object is com.adobe.idp.um.api.infomodel.AuthResult. If the 
authentication is unsuccessful, this method throws an exception. 

You must also create a com.adobe.idp.Context object by using its constructor. Do not confuse this 
Context object with the javax.naming.Context object. 

The com.adobe.idp.Context object is required because you must invoke its initPrincipal 
method and pass the AuthResult object that was returned by the authenticate method. The 
initPrincipal method sets the com.adobe.idp.Context object with the authentication results 
that are stored in the AuthResult object.

Note: You cannot include both the com.adobe.idp.Context import statement and the 
javax.naming.Context import statement in your Java project. The javax.naming.Context 
object does not contain an initPrincipal method. 

1 The user accesses a web site and specifies a user name and password. This information is 
submitted to a J2EE application server hosting LiveCycle Forms.

2 The user credentials are authenticated with User Manager. If the user credentials are valid, the 
workflow proceeds to step 3. Otherwise, a message is sent to the user stating that the user is not an 
authorized user.

3 User information and a form design are retrieved from a secured enterprise database. 

4 User information is merged with a form design and the form is rendered to the user. 



Adobe LiveCycle Forms Authenticating Users
Developing Custom Applications  Setting the LiveCycle Forms invocation context     112

Setting the LiveCycle Forms invocation context 

You can set the invocation content that is used by the Form Server Module by calling the IFormServer 
interface’s setInvocationContext method and passing the com.adobe.idp.Contextobject. The 
Form Server Module will forward this context as necessary when making requests for content from other 
repositories. 

For example, assume a secured enterprise database requires a user context before letting a client 
application have access to it. In this scenario, the Form Server Module forwards the context that is set by 
invoking the setInvocationContext method. 

Creating application logic to authenticate users 

You can programmatically authenticate users by performing the following tasks in a Java project:

1. Add the um-client.jar to your Java project’s class path. 

2. Add the following import statements to your Java project:

// UserManager API import statements
import com.adobe.idp.Context;
import com.adobe.idp.um.*;
import com.adobe.idp.um.api.infomodel.AuthResult;

3. Create an InitialContext object by using the InitialContext constructor.

4. Perform a JNDI look-up by invoking the InitialContext object’s lookup method and pass the 
string com.adobe.idp.um.UserManagerHome as an argument. Store the return value in a 
UserManagerHome object variable and ensure that you cast the return value to UserManagerHome. 

5. Create a UserManager object by invoking the UserManagerHome object’s create method. 

6. Authenticate a user by invoking the UserManager object’s authenticate method. Pass a user 
name and password to this method and store the return value in an AuthResult object. 

7. Create a com.adobe.idp.Context object by using its constructor. 

8. Invoke the Context object’s initPrincipal method and pass the AuthResult object that was 
returned by the authenticate method.



Adobe LiveCycle Forms Authenticating Users
Developing Custom Applications  Creating application logic to authenticate users     113

The following example authenticates a user with User Manager. 

Example 9.1 Authenticating a user with User Manager

// Declare objects 
Context ctx = null;
UserManagerHome userManagerHome = null;
UserManager userManager = null;
InitialContext initialContext = null ;

 
try

{
// Allocate memory to an InitialContext object
initialContext = new InitialContext();

//Perform a lookup to User Manager
userManagerHome = 

(UserManagerHome)initialContext.lookup("com.adobe.idp.um.UserManagerHome") ;

// Allocate memory to the UserManager object by invoking the UserManagerHome 
//object's create method
userManager = userManagerHome.create();

// Call the authenticate method
AuthResult res = userManager.authenticate("<username>", 

"<Password>".getBytes());

// Allocate memory to the com.adobe.idp.Context object
ctx = new Context();

// Invoke initPrincipal
ctx.initPrincipal(res);

// Set the Form Server Module’s invocation context
IFormServerOb.setInvocationContext(cxt);  

}

catch (Exception e)
{

System.out.println("The exception is  "+ e.getMessage()); 
}

Note: For information about invoking the Form Server Module, see “Invoking the Form Server Module” on 
page 30.



     114

10 Rendering Forms from .NET

This chapter explains the programming details required to render PDF forms using Microsoft Visual Studio 
.NET 2003. The discussion is based on a nearly identical process of rendering interactive forms to the one 
discussed and illustrated in “Rendering Interactive Forms as PDF” on page 48.

The code examples displayed in this chapter show how to locally invoke the Form Server Module using a 
FSSoapClient object referenced in an ASP .NET project using Visual C# .NET. You will need to add 
references to SOAPClient.dll and ICSharpCode.SharpZipLib.dll, and your source file should contain the 
following statement referencing the SoapClient namespace: 

using SoapClient;

For information, see “Invoking Form Server Module using the Microsoft .NET client assembly” on page 36.

This chapter contains the following information.

Client applications rendering PDF forms
The Form Server Module is stateless and runs on a J2EE application server and is only accessible through 
the Form Server Module API. A client application that uses the Form Server Module API is able to invoke 
the Form Server Module and instruct it to perform tasks such as rendering forms, processing submitted 
data, and prepopulating forms with data.

A client application that uses the Form Server Module API is able to retrieve the data that is submitted with 
a form. For example, when a user fills in a form and submits it, a client application can retrieve the data that 
was entered in the form’s fields by the user. The client application can then process the data in a variety of 
ways, such as performing calculations, storing it in an enterprise database, or sending it to another 
application, such as an application that authorizes credit cards.

The Form Server Module can prepopulate a form prior to rendering it. Prepopulating a form involves 
inserting data into a form. For example, a client application can query data from a database and instruct 
the Form Server Module to insert the data into a form and then render the form. When the form is 
rendered to a web browser, the user is able to view the data in the displayed form.

Topic Description See

Form-based applications Describes the characteristics of a form-based application. page 114 

Rendering PDF forms Covers the methods you can use to render a form to a 
client web browser. 

page 115 

Retrieving submitted data Covers the methods you can use to retrieve data 
submitted from a form.

page 117 

Rendering prepopulated forms Covers the methods you can use to prepopulate a form 
prior to rendering it.

page 119 



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Rendering a form using the Microsoft .NET client assembly     115

Using the Form Server Module API, you can create different types of client applications that interact with 
the Form Server Module, such as ASP .NET pages. This chapter discusses creating ASP .NET web 
applications that can be deployed on an IIS server. 

Consider a client web browser sending an HTTP request to a client application on an IIS-based web server 
requesting a form. When the web application receives the HTTP request, it sends the request to the Form 
Server Module, which then renders the form back to the client web browser within an HTTP response.

Rendering a form using the Microsoft .NET client assembly 
Using the Microsoft .NET client assembly, you create application logic to render a form to a client web 
browser as part of an HTTP response. A form must be rendered before a user can interact with it. 

To render a form, you create a FSSoapClient object and call its renderForm method. The 
renderForm method returns an IOutputContext interface. You use this interface to populate a data 
stream to send to the client web browser with the form.

In addition to using the Microsoft .NET client assembly, you also use standard .NET Framework Class 
Library (FCL) classes. These classes enable you to perform necessary tasks, such as creating a data stream 
to send to the client web browser.

The following process describes how to render a form to a client web browser by locally invoking the Form 
Server Module:

1. Create an FSSoapClient object by calling the FSSoapClient constructor:

FSSoapClient formServer = new FSSoapClient();

2. Set the SOAP endpoint by calling the FSSoapClient object’s setSoapEndPoint method:

formServer.setSoapEndPoint("http://<AppServerURL>:8080/jboss_net/
services/AdobeFSService");

3. Call the FSSoapClient object’s renderForm method and sets its parameters (this is shown in the 
example that follows this process). This method returns an IOutputContext interface. (You can get 
the IOutputContext interface's content type and its byte stream. A typical usage involves using 
Visual C# .NET classes to send the byte stream to the client web browser, which is shown in the 
example that follows this process).

4. Create a byte array and populate it by calling the IOutputContent object’s getOutputContent 
method. This task assigns the content of the IOutputContent object to a byte array. The following 
line of code shows this application logic:

byte[] cContent = myOutputContext.getOutputContent();

5. Call the Response object’s BinaryWrite method to send a data stream to the client web browser. 
Pass the byte array to the BinaryWrite method:

Response.BinaryWrite(cContent);



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Rendering a form using the Microsoft .NET client assembly     116

The following code example renders a form named Loan.xdp to a client web browser:

Example 10.1 Rendering a form to a client web browser

public void PageLoad(object sender, System.EventArgs e){

//Create an FSSoapClient object
FSSoapClient formServer = new FSSoapClient();
formServer.setSoapEndPoint("http://<AppServerURL>:8080/jboss_net/services/

AdobeFSService");

//Declare and populate local variables to pass to renderForm
String sFormQuery = "Loan.xdp";       //Defines the form design to render
String sFormPreference = "PDFForm";       //Defines the preference option
String sContentRootURI = "http://<AppServer>:<AppPort>/LoanApp/forms";
String sTargetURL = "http://<AppServer>:<AppPort/LoanApp>/HandleData"
String sApplicationWebRoot = "http://<AppServer:<AppPort>/LoanApp";

try{
//Call renderForm
IOutputContext myOutputContext = formServer.renderForm(
 sFormQuery,              //sFormQuery
 sFormPreference,            //sFormPreference
 null,                    //cData, 
 "CacheEnabled=False",//sOptions
 null,                    //sUserAgent,
 sApplicationWebRoot,  //sApplicationWebRoot
 sTargetURL,            //sTargetURL
 sContentRootURI,      //sContentRootURI
 null                    //sBaseURL
);

//Create a byte array. Call the IOutputContext interface's
//getOutputContext method
byte[] cContent = myOutputContext.getOutputContent();

//Write a byte stream back to the web browser. Pass the byte array
Response.BinaryWrite(cContent);

}
//Catch a thrown exception
catch (Exception ex)
{

byte[] bArray = (new System.Text.ASCIIEncoding()).GetBytes(ex.Message);
Response.BinaryWrite(bArray);

}
}



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Retrieving submitted data     117

Retrieving submitted data
The Form Server Module API contains methods that enable you to retrieve data submitted from a form. 
The processFormSubmission method must be called to retrieve submitted data. This method returns 
an IOutputContext interface that you can use to retrieve the submitted data.

To retrieve data from the IOutputContext interface, you convert the IOutputContext interface’s 
content to an XML data source. After you perform this task, you can retrieve data from the XML data source 
by using the following FCL DOM classes (available within the System.Xml namespace):

● XmlDocument—Used to create an object that represents an entire XML document.

● XmlElement—Used to create an object that represents a node within an XML document.

● XmlAttributeCollection—Used to iterate through the attributes of an XmlElement.

● XmlNode—Used to create an object that represents a single node within an XML document.

● MemoryStream—Used to transfer the byte array to the DOM.

To use these classes in your project, add the following using statements:

● using System.Xml; 

● using System.IO; 

The following process describes how to create application logic to retrieve data from a form:

1. Create an FSSoapClient object by calling the FSSoapClient constructor.

2. Call the FSSoapClient object’s processFormSubmission method. This method returns an 
IOutputContext interface that contains the data submitted from the form. 

3. Create a byte array by calling the IOutputContext interface’s getOutputContent method.

4. Create a MemoryStream object by passing the byte array into its constructor.

5. Create an XmlDocument object and call its Load method using the MemoryStream object as a 
parameter. You now have the DOM.

6. Retrieve the value of each node within the XML document. One way to accomplish this is to create a 
custom method that accepts two parameters: the XmlDocument object and the name of the node 
whose value you want to retrieve. This method returns a string value representing the value of the 
node. In the code example that follows this process, this custom method is called getNodeText. The 
body of this method is shown. 

7. Calls the getNodeText method for each field from which to retrieve a value. For example, to retrieve 
all fields in the loan form, you must call getNodeText 13 times.



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Retrieving submitted data     118

The following code example shows the application logic that retrieves data submitted from a form. 

Example 10.2 Retrieving data from a form

public void PageLoad(object sender, System.EventArgs e){

 try{

// Call processFormSubmission to handle the submitted data. Pass the
// Request object
myOutputContext = 

formServer.processFormSubmission(Request,"OutputType=0"); 

//Populate a byte array by calling IOutputContext object’s
//getOutContent method
byte [] formOutput = myOutputContext.getOutputContent();

//Create a MemoryStream object 
MemoryStream myMemoryStream = new MemoryStream(formOutput);

// Create an XmlDocument object
XmlDocument myDOM = new XmlDocument();

// Load the XML data into the XmlDocument object:
myDOM.Load(myMemoryStream);

// Call getNodeText for each field in the form
String myAmount = getNodeText("Amount", myDOM);
String myLastName = getNodeText("LastName", myDOM); 
String myFirstName = getNodeText("FirstName", myDOM);
String mySSN = getNodeText("SSN", myDOM);
String myTitle = getNodeText("PositionTitle", myDOM);
String myAddress = getNodeText("Address", myDOM);
String myCity = getNodeText("City", myDOM);
String myStateProv = getNodeText("StateProv", myDOM);
String myZipCode = getNodeText("ZipCode", myDOM);
String myEmail = getNodeText("Email", myDOM);
String myPhoneNum = getNodeText("PhoneNum", myDOM);
String myFaxNum = getNodeText("FaxNum", myDOM);
String myDescription= getNodeText("Description", myDOM);
}//End of try statement

catch (processFormSubmissionException e)
{
  System.out.println("The process form submission error is: " +e);
}

catch (Exception ioEx)
 {
 System.out.println("Exception error is: " +ioEx);
 }

}



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Rendering prepopulated forms     119

// Create the getNodeText custom method
private String getNodeText(String nodeName, XmlDocument myDOM)
{

//Get the node by name. nodeName is the name of the 
//node passed to this method
XmlNodeList nl = myDOM.GetElementsByTagName(nodeName);
XmlNode myNode = nl.Item(0);

return myNode.InnerText;
}//End of getNodeText

Rendering prepopulated forms
A client application can prepopulate a form with data prior to rendering it. The data can come from a 
variety of sources, such as an enterprise database, another form, or another application. Prepopulating a 
form has several advantages:

● Enables the user to view custom data in a form

● Reduces the amount of typing the user does to fill in a form

● Ensures data integrity by having control over where data is placed

Using the Form Server Module API, you can create a client application capable of prepopulating a form. 
Consider the loan sample application introduced in a previous chapter. For information, see “Sample loan 
application” on page 49.

After data is submitted to the HandleData web application, a confirmation form is rendered back to the 
web browser. This form contains data that the user entered into the loan application. 

The following table explains the steps in this diagram.

Note: Prepopulating a form is also known as merging data with a form.

Creating application logic to render a prepopulated form

You must assign a byte array to the renderForm method’s cData parameter to prepopulate a form prior 
to rendering it. This byte array represents an XML data source containing fields located in the form. For 
each field that you want to prepopulate, you must specify a value. It is not necessary to match the exact 
structure of the XML document. For example, to prepopulate the confirmation form, specify a value for the 
LastName, FirstName, and Amount fields.

Assume that a form containing 10 fields has data in 4 of the fields. Next, assume that you want to 
prepopulate the remaining 6 fields. In this situation, you must specify 10 XML elements in the XML data 
source used to prepopulate the form. If you specify only 6 elements, the original 4 fields will be empty.

1 The HandleData web application prepopulates the confirmation form with data.

2 The confirmation form is rendered to the client web browser. 

3 The confirmation form is displayed in the client web browser. 



Adobe LiveCycle Forms Rendering Forms from .NET
Developing Custom Applications  Creating application logic to render a prepopulated form     120

Here are three ways in which you can create a byte array to assign to the cData parameter:

● Convert an existing XML document containing data to merge to a byte stream.

● Assign a string representing an XML document to a byte array. To convert a string to a byte array, create 
a System.Text.ASCIIEncoding object. Then invoke its GetBytes method, which receives the 
string as a parameter.

● Create an XmlDocument object and use its InnerXml property to retrieve a string representation, 
which can be converted to a byte array. For information, see “Converting the XML data source to a byte 
array” on page 87.

The method you choose depends on your preference. However, you would typically use the third method 
when prepopulating either a multipage form containing many fields or a dynamic form. For information 
about prepopulating a dynamic form, see “Rendering Dynamic Forms” on page 79.



     121

11 Rendering Forms using the XML Form Module API

You use the XML Form Module API to develop applications capable of rendering forms as PDF documents. 
For example, you can create an application that retrieves data from an enterprise database, merges it with 
a form design that is created in LiveCycle Designer, and renders the form as a PDF document. The 
application can render a separate PDF document for each enterprise database record.

You cannot use the XML Form Module to render forms to a client web browser. To perform this task, you 
must use the Form Server Module API. After you render a form using the XML Form Module, you can sent it 
to a printer. However, to print forms, it is recommended that you use LiveCycle Print. 

Caution: The XML Form Module API is deprecated. As a result, it is recommended that you use the Form 
Server Module API. 

This chapter contains the following information.

Creating a Form object
When creating a Form object, you use the Connection API and two standard Java classes, 
InitialContext and PortableRemoteObject, to perform a JNDI look-up and return a CORBA object 
that represents a connection to the XML Form service. For information about the Connection API, see the 
“Connection API” chapter in the XML Form Module API Reference. 

The XML Form Module API is a transaction-based API, which means a Form object must be created within 
a transaction. Using the Java UserTransaction class, you can create a UserTransaction object. Call 
the UserTransaction object’s begin method to start the transaction and its commit method to 
complete the transaction.

You can use one of two ways to create a Form object. Both ways involve creating a FormFactory object. 
This object has a create method and a createDefault method; you can use either one to create a 
Form object. This chapter describes creating a Form object by using the create method.

Default.xci file

When calling the create method, you reference an XML configuration file named default.xci. This file is 
placed on the J2EE application server on which LiveCycle Forms is deployed. The file location is dependent 

Topic Description See

Creating a Form object Describes how to create a Form object using the 
create method. 

page 121

Importing packets Describes how to import data packets. page 124

Setting configuration values Describes how to set configuration values. page 125

Rendering PDF documents Explains how to render PDF documents. page 126



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Creating a Form object     122

on which J2EE application server and operating system you are using. This file is placed in the following 
location when LiveCycle Forms is deployed on WebSphere that is located on Windows:

C:\Program Files\WebSphere\AppServer\installedApps\adobe\server1\XMLFormService

By referencing this configuration file, you can use the Form object to set and change configuration values. 
For information, see “Setting configuration values” on page 125.

When calling the FormFactory object’s createDefault method, you use the default values specified 
in the configuration file. For information about creating a Form object by calling the createDefault 
method, see “Invoking the XML Form service” on page 45.

Creating application logic to create a Form object

Specify these values when calling the create method:

● The default configuration file.

● The config packet. For information about packets, see “Importing packets” on page 124. 

You create a Form object by performing the following programmatic tasks:

1. Add the xmlform-client.jar file to your Java project’s build path. For information about the location of 
this file, see “Including LiveCycle Forms library files” on page 28.

2. Add the following import statements to your Java project:

import com.adobe.document.xmlform.Form;
import com.adobe.document.xmlform.FormFactory;
import com.adobe.document.xmlform.FormFactoryHelper;

3. Create a DataManager object. The import statements required to create this object are required to 
create a Form object. For information, see “Invoking the Data Manager Module” on page 40.

4. Create an InitialContext object by using the InitialContext constructor:

InitialContext xmlnamingContext = new InitialContext();

5. Perform a JNDI look-up by calling the InitialContext object’s lookup method and passing the 
string XMLFormService as an argument. Store the return value in an Object variable:

Object xmlObject = xmlnamingContext.lookup("XMLFormService");

6. Create a ConnectionFactory object by calling the PortableRemoteObject object’s narrow 
method. This method determines if the return value of the lookup method can be cast to a 
ConnectionFactory object. Cast the return value to ConnectionFactory:

ConnectionFactory xmlConnectionFactory = (ConnectionFactory) 
PortableRemoteObject.narrow(xmlObject,ConnectionFactory.class);

7. Create a FormFactory object by calling the FormFactoryHelper object’s narrow method (it is 
unnecessary to instantiate a FormFactoryHelper object). Pass the ConnectionFactory object to 
this method and call its getConnection method. Cast the return value to 
org.omg.CORBA.Object:

FormFactory mFormFactory = 
FormFactoryHelper.narrow((org.omg.CORBA.Object)xmlConnection
Factory.getConnection());



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Creating a Form object     123

8. Create a FileDataBuffer object that stores the default.xci configuration file. Call the DataManager 
object’s createFileDataBuffer method and pass the location of the configuration file:

FileDataBuffer configFile = 
mDataManager.createFileDataBuffer("C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\XMLForm
Service\\default.xci");

9. Create a string array with one element. This string array stores the names of packets that are imported. 
Because you need to specify the config packet when calling the create method, assign the value 
config to the string array:

String pList[] = new String[1];
List[0] = "config"; 

10. Create a Form object by calling the FormFactory object’s create method. Pass the 
FileDataBuffer object representing the configuration file and the string array storing the packet 
name:

Form myForm = mFormFactory.create(configFile,pList);

The following example shows how to create a Form object.

Example 11.1 Creating a Form object by using the FormFactory object’s create method

//Declare a ConnectionFactory object
ConnectionFactory xmlConnectionFactory = null;

// Lookup the XMLForm service
Object xmlObject = namingContext.lookup("XMLFormService");

//Create a ConnectionFactory object
xmlConnectionFactory = (ConnectionFactory) 
PortableRemoteObject.narrow(xmlObject,ConnectionFactory.class);

//Use the xmlConnectionFactory object to create a FormFactory object
FormFactory mFormFactory = 
FormFactoryHelper.narrow((org.omg.CORBA.Object)xmlConnection
Factory.getConnection());

// Create a FileDataBuffer object by referencing the default.xci file
FileDataBuffer configFile = mDataManager.createFileDataBuffer("C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\XMLForm
Service\\default.xci");

//Create a string array to store all packet names
String pList[] = new String[1];
pList[0] = "config";

// Create a Form object by calling create
Form myForm = mFormFactory.create(configFile,pList);



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Importing packets     124

Importing packets
In LiveCycle Designer, a form author typically saves the form design for use with LiveCycle Forms as an XDP 
file. XDP is an XML format that provides a mechanism for packaging units of content (known as XDP 
packets) within a surrounding XML container. 

When the form author saves the form design, the resulting XDP file typically contains XDP packets that 
define the form design and related configuration information. Using the XML Form Module API, you can 
import packets. Typically, you import these packets: 

● template—Encloses the XML form design definition created in LiveCycle Designer. This packet 
specifies the form that is rendered as a PDF document.

● datasets—Encloses XML form data that originates from an XML form and may be intended for 
merging with an XML form design definition.

To import these packets, you call the Form object’s importPackets method, which requires the 
following parameters:

● The name of the packet to import

● A FileDataBuffer object representing the data or form design to load

Importing a template packet

To import a template packet, you specify template as the name of the packet and the path to the form 
design file. You need to create a FileDataBuffer object, which belongs to the Data Manager Module 
API, to reference the form design file. To populate this object, call the DataManager object’s 
createFileDataBuffer (or createFileDataBufferFormURL) method and pass the path to the 
form design file.

The following example shows how to import a template packet:

FileDataBuffer formDefinitionFile = 
mDataManager.createFileDataBuffer("C:\\po.xdp");
pList[0] = "template";
myForm.importPackets(formDefinitionFile,pList);

Importing a datasets packet

To import a datasets packet, you specify datasets as the name of the packet and the XML file that 
contains the data to merge with the form design file. You need to create a FileDataBuffer object to 
reference the XML file. To populate the FileDataBuffer, call the DataManager object’s 
createFileDataBuffer method and pass the path to the XML file.

The following example shows how to import a datasets packet:

FileDataBuffer xmlFile = mDataManager.createFileDataBuffer("C:\\po.xml");
pList[0] = "datasets";
myForm.importPackets(xmlFile,pList);



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Determining if a packet exists     125

Determining if a packet exists

Using the XML Form Module API, you can determine if a specific packet exists by calling the Form object’s 
isPacketPresent method. This method returns a boolean value indicating whether the packet exists. 

The following example shows how to determine whether the template packet exists:

boolean templatePresent = myForm.isPacketPresent("template");
if (templatePresent)

pw.println("The template packet is present");
else

pw.println("The template packet is not present");

Setting configuration values
The XML Forms Architecture leverages XML for the representation of all information and incorporates XML 
architectural concepts such as Document Object Models (DOMs). One such DOM is the Configuration 
DOM.

The Configuration DOM provides a mechanism for specifying configuration options for the XML Form 
Module. The XML Form Module provides a default configuration file (default.xci). This file is loaded when 
the Form object is instantiated by using the create method. For information, see “Creating a Form 
object” on page 121.

Using the XML Form Module API, you can set the destination and pdf.xdc.uriconfiguration values, 
which are nodes in the Configuration DOM. To set a configuration value, you call the Form object’s 
setConfigValue method and specify the following parameters:

● The expression that specifies a Configuration DOM node for which a value is set

● The value to assign to the node

Setting the destination configuration value

The destination configuration value specifies the output format when rendering documents. The only 
acceptable value is pdf. The following example shows how to set the destination configuration value:

myForm.setConfigValue("destination","pdf");

Setting the pdf.xdc.uri configuration value

The pdf.xdc.uri configuration value specifies a path to an XDC file named acrobat7.xdc. This file 
contains information such as the available fonts and must be referenced to successfully render a PDF 
document. This file is placed on the J2EE application server on which LiveCycle Forms is deployed. The file 
location is dependent on which J2EE application server and operating system you are using. This file is 
placed in the following location when LiveCycle Forms is deployed on WebSphere that is located on 
Windows:

C:\Program Files\WebSphere\AppServer\installedApps\adobe\server1\XMLFormService\bin



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Determining a configuration value     126

The following example shows how to set the pdf.xdc.uri configuration value:

myForm.setConfigValue("pdf.xdc.uri","C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\\XMLFormService
\\bin\\acrobat7.xdc");

For information about deploying the XML Form Module, see the Installing and Configuring guide for your 
application server.

For a complete list of the configuration values that you can set, see the “XML Form Module API” chapter in 
the XML Form Module API Reference.

Determining a configuration value

Using the XML Form Module API, you can determine the value of a Configuration DOM node by calling the 
Form object’s getConfigValue method. This method requires an expression that specifies a node in the 
Configuration DOM from which a value is retrieved. The value of the node is returned as a String value. 
The following example shows how to get the value of pdf.xdc.uri:

String myConfigValue = myForm.getConfigValue("pdf.xdc.uri");

Rendering PDF documents
After you create a Form object, import data packets, and set configuration values, you can render a PDF 
document. The data contained in the XML document that is defined by the datasets packet is merged 
with the form design that is specified by the template packet. 

To render a PDF document, call the Form object’s render method. This method returns a 
FileDataBuffer object representing the PDF document. You can save the content of this object as a 
PDF document. For information about the FileDataBuffer object, see the “Data Manager Module API” 
chapter in the XML Form Module API Reference.

You can render a PDF document by performing the following programmatic tasks:

1. Create a Form object. For information, see page 121.

2. Import data packets. For information, see page 124.

3. Set configuration values. For information, see page 125. 

4. Create a ReturnStatusHolder object to pass to the render method. 

5. Populate a FileDataBuffer object by calling the Form object’s render method. Pass the 
ReturnStatusHolder object as an argument.

6. Get the byte size of the FileDataBuffer object by calling its getBufLength method. This method 
returns a long value representing the size, in bytes, of the FileDataBuffer object.

7. Get the data contents of the FileDataBuffer object by calling its getBytes method. This method 
returns an array of bytes representing the data within the FileDataBuffer object. Store this 
method’s return value in a byte array variable.

8. Create a Java File object by using the File constructor. Because this file represents the saved PDF 
document, ensure that the file name extension is .pdf.



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Rendering PDF documents     127

9. Create a FileOutputStream object by using its constructor. This object is used to write the byte 
array to the PDF file.

10. Call the FileOutputStream object’s write method and pass the byte array returned from the 
FileDataBuffer object’s getBytes method.

11. Close the FileOutputStream object by calling its write method.

The following example shows how to render and save a PDF document.

Example 11.2 Rendering a PDF document by using the Form object’s render method

//Declare a ConnectionFactory object
ConnectionFactory xmlConnectionFactory = null;

// Lookup the XMLForm service
Object xmlObject = namingContext.lookup("XMLFormService");

//Create a ConnectionFactory object
xmlConnectionFactory = (ConnectionFactory)

PortableRemoteObject.narrow(xmlObject,ConnectionFactory.class);

//Use the xmlConnectionFactory object to create a FormFactory object
FormFactory mFormFactory =

FormFactoryHelper.narrow((org.omg.CORBA.Object)xmlConnection
Factory.getConnection());

// Create a FileDataBuffer object and reference the default.xci file
FileDataBuffer configFile = mDataManager.createFileDataBuffer("C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\XMLForm
Service\\default.xci");

//Create a string array to store packet names
String pList[] = new String[1];
pList[0] = "config";

// Create a Form object by calling create
Form myForm = mFormFactory.create(configFile,pList);

//Import a template packet
FileDataBuffer formDefinitionFile =

mDataManager.createFileDataBuffer("C:\\po.xdp");
pList[0] = "template";
myForm.importPackets(formDefinitionFile,pList);

//Import a datasets packet
FileDataBuffer xmlFile = mDataManager.createFileDataBuffer("C:\\po.xml");
pList[0] = "datasets";
myForm.importPackets(xmlFile,pList);

//Set the destination configuration value
myForm.setConfigValue("destination","pdf");



Adobe LiveCycle Forms Rendering Forms using the XML Form Module API
Developing Custom Applications  Rendering PDF documents     128

//Set the pdf.xdc.uri configuration value
myForm.setConfigValue("pdf.xdc.uri","C:\\Program 
Files\\WebSphere\\AppServer\\installedApps\\adobe\\server1\\XMLFormService\\
bin\\acrobat7.xdc");

//Create a ReturnStatusHolder object
ReturnStatusHolder rs = new

ReturnStatusHolder(ReturnStatus.XFA_RENDER_FAILURE); 

//Call the render method
FileDataBuffer myRenderedPDF = myForm.render(rs);

//Get the byte size of the FileDataBuffer object 
long pdfSize = myRenderedPDF.getBufLength();

//Get the DataBuffer object's data contents. Specify 0
// as the starting position and pdfSize as the length
byte [] pdfData = myRenderedPDF.getBytes(0,pdfSize);

//Create a PDF file named Test.pdf and place it in the root of C:\
File myPDFFile = new File("C:\\Test.pdf");

//Create a FileOutputStream object 
OutputStream myFileW = new FileOutputStream(myPDFFile);

//Call the FileOutputStream object's write method and pass the pdf data
myFileW.write(pdfData);

//Close the FileOutputStream object
myFileW.close();

Note: This example assumes that a DataManager object exists and that this entire code fragment is 
located within a transaction block. For information about this object, see “Invoking the Data 
Manager Module” on page 40.



     129

A Character Sets and Unicode Encodings

Each module supports data, forms, and other content that use specific character sets and encodings of 
those character sets.

A character set defines a set of characters or glyphs. An encoding describes how those characters are 
represented using a series of bits. A character is encoded either through its original encoding (single or 
multibyte encoding) or a Unicode encoding. 

The following Unicode encodings are supported:

● UTF-8 

● UTF-16BE (Big Endian) 

● UTF-16LE (Little Endian) 

This table lists the character sets supported in original encoding and through Unicode encoding.

For a reference of the characters included in the Microsoft Windows character sets, go to 
www.microsoft.com/globaldev/reference/WinCP.mspx. For a reference of the characters included in the 
remaining character sets, go to http://oss.software.ibm.com/cgi-bin/icu/convexp.

Original and Unicode encoding support Unicode encoding support

Big5 (Traditional Chinese) ISO-2022-KR (Korean)

Big5-HKSCS (Traditional Chinese Big5 with Hong Kong SCS) ISO-8859-5 (Cyrillic)

GBK (Simplified Chinese) ISO-8859-9 (Turkish) 

ISO-2022 (Japanese) windows-949 (Korean)

ISO-2022-JP-2 (Japanese) windows-1251 (Cyrillic)

ISO-8859-1 (West European) windows-1254 (Turkish)

ISO-8859-2 (East European)

ISO-8859-7 (Greek)

Shift_JIS (Japanese)

windows-932 (Japanese Shift-JIS)

windows-936 (Simplified Chinese GBK)

windows-950 (Traditional Chinese Big5)

windows-1250 (Central Europe) 

windows-1252 (Latin I)

windows-1253 (Greek)

JIS X 0212

http://www.microsoft.com/globaldev/reference/WinCP.mspx
http://oss.software.ibm.com/cgi-bin/icu/convexp


     130

B Language and Locale Combinations

Each module handles form fields and data that are localized to a wide variety of languages and locales.

This table lists the specific language and locale combinations.

Language Locale ID

Bulgarian (Bulgaria) bg_BG

Chinese, Simplified (P.R.C.) zh_CN

Chinese, Traditional (Taiwan) zh_TW

Chinese, Traditional with HKSCS-2001 
Extensions (Hong Kong)

zh_HK

Croatian (Republic of Croatia) hr_HR

Czech (Czech Republic) cs_CZ

Danish (Denmark) da_DK

Dutch (Belgium) nl_BE

Dutch (Netherlands) nl_NL

English (Australia) en_AU

English (Canada) en_CA

English (India) en_IN

English (Ireland) en_IE

English (New Zealand) en_NZ

English (South Africa) en_ZA

English (United Kingdom) en_GB

English (United Kingdom, Euro Currency) en_GB@Euro

English (United States) en_US

Finnish (Finland) fi_FI

French (Belgium) fr_BE

French (Canada) fr_CA

French (France) fr_FR



Adobe LiveCycle Forms Language and Locale Combinations
Developing Custom Applications       131

French (Luxembourg) fr_LU

French (Switzerland) fr_CH

German (Austria) de_AT

German (Germany) de_DE

German (Luxembourg) de_LU

German (Switzerland) de_CH

Greek (Greece) el_GR

Hungarian (Hungary) hu_HU

Italian (Italy) it_IT

Italian (Switzerland) it_CH

Japanese (Japan) ja_JP

Korean (Korea) ko_KR

Norwegian (Norway) no_NO

Norwegian (Norway, Nynorsk) no_NO_NY

Polish (Poland) pl_PL

Portuguese (Brazil) pt_BR

Portuguese (Portugal) pt_PT

Romanian (Romania) ro_RO

Russian (Russia) ru_RU

Serbo-Croatian (Bosnia and Herzegovina) sh_BA

Serbo-Croatian (Croatia) sh_HR

Serbo-Croatian (Republic of Serbia and 
Montenegro)

sh_CS

Slovak (Slovak Republic) sk_SK

Slovenian (Republic of Slovenia) sl_SL

Spanish (Argentina) es_AR

Spanish (Bolivia) es_BO

Spanish (Chile) es_CL

Language Locale ID



Adobe LiveCycle Forms Language and Locale Combinations
Developing Custom Applications       132

Spanish (Colombia) es_CO

Spanish (Costa Rica) es_CR

Spanish (Dominican Republic) es_DO

Spanish (Ecuador) es_EC

Spanish (El Salvador) es_SV

Spanish (Guatemala) es_GT

Spanish (Honduras) es_HN

Spanish (Mexico) es_MX

Spanish (Nicaragua) es_NI

Spanish (Panama) es_PA

Spanish (Paraguay) es_PY

Spanish (Peru) es_PE

Spanish (Puerto Rico) es_PR

Spanish (Spain) es_ES

Spanish (Uruguay) es_UY

Spanish (Venezuela) es_VE

Swedish (Sweden) sv_SE

Turkish (Turkey) tr_TR

Language Locale ID



     133

Glossary

This glossary contains terminology definitions that are 
specific to documentation for the Adobe LiveCycle suite 
of products. These terms may have different meanings in 
other contexts, but they have restricted meanings in this 
documentation. 

A

accessible forms

Forms that users with disabilities or vision impairment can 
view and fill using screen readers and other assistive 
technologies. See also tagged Adobe PDF form.

Acrobat form

A PDF document, created in Acrobat, that contains one or 
more form fields. The PDF document may also contain 
non–form content. 

action

In a workflow, the representation of a step in a business 
process.

Adobe certified document

A document that is signed with a specific Adobe root 
certificate. An Adobe certified document provides a 
strong guarantee as to the authenticity and immutability 
of the document. See also certificate.

Adobe document services

Adobe document services extend the value of core 
enterprise systems to ensure more secure, reliable, and 
efficient use of business-critical information across the 
extended enterprise. Adobe document services include 
the Adobe LiveCycle suite of products and the Acrobat 
product line. 

application

A set of generally interdependent files that make up a 
self-contained application that Adobe LiveCycle products 
can run. Applications may include files such as form 
designs, Java Server Pages, HTML pages, servlets, and 
images.

B

branch

A branch contains a set of actions interconnected by 
routes, representing a sequential path taken by a process 
at execution. The branch always determines the behavior 
of the workflow.

C

certificate

An electronic file that establishes your identity, by binding 
your identity to your public key, when doing business or 
other transactions on the web. A certificate (or sometimes 
called a digital certificate) is issued by a certificate 
authority (CA). See also Adobe certified document.

client

The requesting program in a client/server relationship. A 
web browser is an example of a client application.

credential

The file that contains a private key. (The corresponding 
public key is contained in a certificate.) A private key is 
what one principal presents to another used to establish 
identity in decryption and signing operations. Credentials 
are issued by an authentication agent or a certification 
authority. See also certificate.

D

deadline

The time by which a person must complete a work item. 
Deadlines are properties of workflows.

dynamic form

A form that can expand or contract to reflect the amount 
of incoming data. See also interactive form.



Adobe LiveCycle Forms Glossary
Developing Custom Applications      134

E

ebXML 

Electronic Business using eXtensible Markup Language 
(ebXML). A modular suite of specifications that enables 
enterprises of any size and in any geographical location to 
conduct business over the Internet. See also registry.

encryption 

The conversion of data into a format (called a ciphertext) 
that cannot be easily understood by unauthorized 
persons. The conversion is done using an encryption 
algorithm.

F

form

An electronic document that captures and delivers data. A 
person may add data to an interactive form, or a server 
process may merge a form design with data to produce a 
form. 

form authors

LiveCycle Designer users who are capable of creating 
fillable forms to be used in Acrobat or Adobe Reader, and 
simple non-interactive forms for deployment to LiveCycle 
Forms. See also form developers.

FormCalc

A calculation language similar to that used in common 
spreadsheet software that facilitates form design without 
requiring a knowledge of traditional scripting techniques 
or languages.

form design

The design-time version of a form that an author or 
developer creates in LiveCycle Designer.

form developers

LiveCycle Designer users who are capable of creating 
complex form-based applications for use in different 
environments. See also form author.

form object

A form element, such as a button or text field, that you 
can place on a form. An object has its own set of 
properties and events.

I

interactive form

A form that a person can interact with and complete 
electronically. 

N

non-interactive form

A form that a person can view or print but cannot fill 
electronically. Non-interactive forms can be merged or 
prepopulated with data, but the data cannot be changed 
by a user. Non-interactive forms are designed for output.

P

PDF document 

Portable Document Format. A file conforming to the PDF 
specification as published by Adobe Systems or a file 
conforming to the XDP specification, containing exactly 
one PDF packet and no more than one each 
XFA-Template, XFA-Configuration, XFA-SourceSet, and 
Annotations packets. 

PDF form

A form that users can access in Acrobat and Adobe 
Reader. PDF forms are either interactive or 
non-interactive. 

permissions

Security settings applied, for example, to restrict users 
from opening, editing, printing, or removing encryption 
from a PDF file. Permissions cannot be changed unless the 
user has the Permissions password. Permissions can be set 
in LiveCycle Designer, Acrobat, LiveCycle Document 
Security, and other products.



Adobe LiveCycle Forms Glossary
Developing Custom Applications      135

policy 

Defines a set of security permissions and users who can 
access a PDF document to which the policy is applied. 
Policies are created using LiveCycle Policy Server and can 
be applied to documents using LiveCycle Policy Server, 
LiveCycle Document Security, or Acrobat 7.0 or later.

prepopulated form

A form that appears to the user with some or all fields 
automatically populated with data.

Q

QPAC

Quick Process Action Component. A JAR file that contains 
server-side code and client-side code for use with 
LiveCycle Workflow. In LiveCycle Workflow Designer, 
QPACs provide action components that can be added to 
workflows to represent a step in a process. LiveCycle 
Workflow Server interprets each action of the workflow 
and executes the server-side code of the corresponding 
QPACs. QPACs enable LiveCycle Workflow to interact with 
other Adobe LiveCycle products, such as LiveCycle Forms 
and LiveCycle Barcoded Forms.

R

reminder

A notification sent to people that reminds them to 
complete a work item. Reminders are properties of 
workflows.

render

An action whereby LiveCycle Forms merges a form design, 
possibly with data, to display a form in PDF or HTML 
format in a browser. 

registry

An ebXML-compliant repository of shared information 
that provides services for the purpose of enabling 
business process integration between interested parties. 
See also ebXML and repository.

repository

The underlying storage area within a registry. See also 
registry.

restricted document

A PDF document with password security restrictions 
(permissions) that prevent the document from being 
opened, printed, or edited. 

rights-enabled document

A PDF document that includes security extensions that 
enable Adobe Reader users to fill forms, add comments, 
and sign documents.

route

The path between actions on a workflow. Routes 
determine the order in which LiveCycle Workflow Server 
executes actions at run time.

run time

For form rendering, the time when an application or 
server process retrieves a form design, possibly merges it 
with data, and presents it to a user for viewing or filling.

S

split

A segment in a workflow that contains one or more 
branches. The branches in a split are executed in parallel.

static form

A form that remains exactly as it was designed. The layout 
does not change according to the amount of incoming 
data.

subform

An object that can act as a container for form objects and 
other subforms. A subform helps to position form objects 
relative to each other and provide structure in dynamic 
form designs. A subform can also provide a reference 
point, when binding data to a form, by restricting the 
scope for a field so that it matches that of the 
corresponding data node.



Adobe LiveCycle Forms Glossary
Developing Custom Applications      136

T

tagged Adobe PDF form

Includes a logical structure and a set of defined 
relationships and dependencies among the various 
elements, plus additional information that permits reflow. 
See also accessible forms.

turnkey

An installation option that automatically installs and 
configures the LiveCycle product files, JBoss application 
server, and MySQL database, and deploys the product 
files to JBoss. After you perform a turnkey installation, the 
LiveCycle product is ready to use.

U

usage rights

Rights that extend the functionality of Adobe Reader and 
enable users to save forms with data, add comments, and 
sign documents.

W

workflow

The electronic representation of a business process. 
Workflows are created using LiveCycle Workflow Designer. 

X

XDP file

XML Data Package. LiveCycle Designer saves form designs 
as either XDP files or PDF files. LiveCycle Forms uses XDP 
files to render forms in PDF or HTML format.

XML Forms Architecture

Represents the underlying technology beneath the 
Adobe XML forms solution. It enables the construction of 
robust and flexible form-based applications for use on 
either the client or the server. 

XML form

A PDF form that conforms to the Adobe PDF specification 
and the Adobe XML Forms Architecture. XML forms are 
typically created in LiveCycle Designer. XML forms can 
have the file name extension .xdp or .pdf.



     137

Index

A
Acrobat forms  100
APIs

Form Server Module  30
XML Form Module  45

authenticating users  110
axis.jar file  29

B
begin method  40

C
caching forms

client-side caching  55
server-side caching  54

calculating data  48, 92, 114
client-side caching  55
client-side subform controls  17
commons-discovery.jar file  29
commons-logging.jar file  29
configuration values, setting  125
Connection API  40
content type

converting  66
form considerations  60

converting
form fields to text  102
XML document to byte array  69
XML string to byte array  71

converting content type  66
create method  38
createDefault method  45
creating

application logic to render forms  57, 83, 93
application logic to retrieve submitted data  62
byte array to render prepopulated form  68, 119
DataManager object  40
EJBClient object (local)  31
EJBClient object (remote)  32
form designs  17
Form object  45
Form objects  121
Microsoft.NET client object  36
SOAPClient object  34

D
Data Manager Module  11
Data Manager Module API  40
datamanager-client.jar file  28
datasets packet, importing  124
default.xci file  121
DMUtils object  42

Document object  43, 62
DocumentBuilder object  62
DocumentBuilderFactory object  62
dynamic forms  79

E
EJBClient class  30
EJBClient object

using to invoke the Form Server Module  34
using to render forms  57

event timing  19
examples

converting an XML data source to a byte array  88, 89
converting an XML document to a byte array  70
converting an XML string to a byte array  71
creating a DataManager object  42, 113
creating a Form object using createDefault  47
creating a Form object using the create method  123
creating a PDFDocument using a temporary file  107
creating a SOAPClient object using FormServerFactory class  38
creating an EJBClient object using FormServerFactory class  39, 

40
dynamically creating an in-memory XML data source  84
handling a form containing a calculation script.  98
invoking Form Server Module using EJBClient object  34
invoking Form Server Module using SOAPClient class  36
prepopulating a dynamic form  84
prepopulating a form  70, 71
rendering a form to a client web browser  94, 116
rendering a form using a SOAPClient object  58
rendering a form using an EJBClient object  57
rendering a PDF document  127
rendering a prepopulated form  89
retrieving submitted data from a form  64, 118
retrieving submitted PDF data  105
saving a PDF document  109

exportDataFormat run-time option  66
exporting form data  101

F
files

datamanager-client.jar  28
formserver-client.jar  28, 32
SoapClient.dll  36
xmlform-client.jar  28

flattening form fields  102
form design buttons  20
form design scripts  18
form designs

about creating  16
creating  17
passing by value  77



Adobe LiveCycle Forms Index
Developing Custom Applications       138

form fields
See also forms
about  100, 110
flattening  102
importing and exporting data  100, 110

form rendering options  53, 92
form server  92
Form Server Module

API. See APIs
invoking  30
invoking locally  31
invoking remotely  32
invoking through SOAP  34

form-based applications  48, 92, 114
forms

about rendering  48, 92, 114
design to render  53
rendering interactive  52, 92, 115
rendering prepopulated  68, 119
sample loan application  49
setting preferences  53, 92
submitted data  60, 117

formserver-client.jar file  28
FormServerFactory class, create method  38

G
getOutputContent method  57, 93

H
HTML

creating form designs  18
output  16
rendering  91

HTTP request and response  48, 92, 114

I
ICSharp utility  37
import statements  87, 88
importing

form data  100, 110
XDP packets  124

InitialContext object  40
invoking

Data Manager service  40
Form Server Module  30
Form Server Module locally  31
Form Server Module remotely  32
Form Server Module using SOAP  34
XML Form service  45

IOutputContext interface  57, 93

J
j2ee.jar file  29
JAR files  28
Java import statements. See import statements
Java JNDI look-up  40

Java servlets
about  52
creating to render forms  57, 83, 93
creating to retrieve submitted data  62

jaxrpc.jar file  29

L
library files  28

M
merging data  68, 119
methods

begin  40
create  38
createDefault  45
getOutputContent  57, 93
newInstance  62
parse  62
processFormSubmission  62
renderForm  57, 93
setContentType  57, 93
setInitialContext  32
setSOAPEndPoint  35

N
newInstance method  62
Node object  62
NodeList object  62

O
objects

creating a Form object  121
DataManager  40
Document  62
DocumentBuilder  62
DocumentBuilderFactory  62
EJBClient (local)  31
EJBClient (remote)  32
Form  45
Form Server client (Microsoft .NET client object)  36
Node  62
NodeList  62
SOAPClient  34

P
parse method  62
passing a form design by value  77
PDF documents, rendering  126
PDFManipulationAPI.jar file  28
planning applications  16
PortableRemoteObject object  40
posting data

merging data  68, 119
retrieving  60, 117
specifying target URL  54

prepopulating forms  68, 119
processFormSubmission method  62
processing a submitted form  60, 117



Adobe LiveCycle Forms Index
Developing Custom Applications       139

R
renderForm method  57, 93
rendering forms

about  48, 92, 114
HTML  92
interactive  52, 92, 115
non-interactive  126
PDF  53
prepopulated  68, 119

retrieving submitted data  60, 62, 117
running scripts  18
run-time options

converting content type (exportDataFormat)  66
standalone option  55
XCI options  56

S
saving a PDF document  108
saving XML data  65
sContentRootURI parameter  53
server-side caching  54
ServletOutputStream object  57, 93
servlets. See Java servlets
setContentType method  57, 93
setInitialContext method  32
setSOAPEndPoint method  35
setting

a SOAP endpoint  35
configuration values for XML Form Module  125
form preference options  53, 92

sFormQuery parameter  53
SOAP endpoint  35
SOAPClient class

about  30
creating  35
setSOAPEndPoint method  35

SOAPClient object
using to invoke Form Server Module  34
using to render forms  58

sPreference parameter  53, 92
standalone option  55
submitted data, retrieving  62
submitting data as XML  60, 117

T
target URL  54
template packet, importing  124
transactions  40
transferring PDF data  103

U
URL

object  69
specifying for posting data  54

User Manager  110
User Manager API  110
UserTransaction object  40

X
XCI run-time options  56
XDP packets  124
XFA subsets  19
XML classes  62
XML documents, converting  69
XML Form Module API  45
XML forms  100
XML string variable, converting  71
xmlform-client.jar file  29



July 2006

Adobe® LiveCycle™ Forms
Version 7.2

Documentation Map

bbc

What’s New

Overview

Installing and Configuring LiveCycle for JBoss

Installing and Configuring LiveCycle for WebSphere

Installing and Configuring LiveCycle for WebLogic

Developing Custom Applications 

Developing User Management Service Providers

Form Server Module API Reference

XML Form Module API Reference

Adobe User Management SPI Reference

Transformation Reference

Adobe LiveCycle Forms Readme



Installing and Configuring LiveCycle

The Installing and Configuring LiveCycle™ documentation provides information about installing, 
configuring, and deploying LiveCycle products. To ensure that customers have access to the most recent 
and updated information, the documentation is located at the following website:

www.adobe.com/support/documentation/en/livecycle/

Installing and Configuring guides

The Installing and Configuring LiveCycle documentation is provided in a set of six guides based on the 
LiveCycle product and application servers.

The Installing and Configuring LiveCycle for JBoss, Installing and Configuring LiveCycle for WebLogic, and 
Installing and Configuring LiveCycle for WebSphere guides describe how to install and configure the 
following LiveCycle products and deploy the products to the specific application server:

● Adobe® LiveCycle Assembler 7.2.1

● Adobe LiveCycle Forms 7.2

● Adobe LiveCycle Form Manager 7.2

● Adobe LiveCycle PDF Generator 7.2 Professional, LiveCycle PDF Generator 7.2 Elements, and 
LiveCycle PDF Generator 7.2 for PostScript®

● Adobe LiveCycle Print 7.2

● Adobe LiveCycle Workflow 7.2.1

● Watched Folder

The Installing and Configuring LiveCycle Security Products for JBoss, Installing and Configuring LiveCycle 
Security Products for WebLogic, and Installing and Configuring LiveCycle Security Products for WebSphere 
guides describe how to install and configure the following LiveCycle products and deploy the products to 
the specific application server:

● Adobe LiveCycle Document Security 7.2

● Adobe LiveCycle Policy Server 7.2

● Adobe LiveCycle Reader® Extensions 7.2

Updated product information

A Knowledge Center article has also been posted to communicate any updated LiveCycle product 
information. You can access the article from the following website:

www.adobe.com/support/products/enterprise/knowledgecenter/c4811.pdf

http://www.adobe.com/support/products/enterprise/knowledgecenter/c4811.pdf
http://www.adobe.com/support/documentation/en/livecycle/


bbc

Adobe® LiveCycle™ Forms
July 2006 Version 7.2

Transformation Reference



© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle™ Forms 7.2 Transformation Reference for Microsoft® Windows®, UNIX®, and Linux®
Edition 3.0, July 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished 
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part 
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, 
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected 
under copyright law even if it is not distributed with software that includes an end user license agreement. 

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in the informational content contained in this guide. 

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The 
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to 
obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual 
organization.

Adobe, the Adobe logo, Acrobat, LiveCycle, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the 
United States and/or other countries. 

Apple, Mac, and Mac OS are trademarks of Apple Computer, Inc., registered in the United States and other countries.

Microsoft and Windows are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. 

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

This product includes code licensed from RSA Security, Inc. 

Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. 

Notice to U.S. Government End Users. The Software and Documentation are "Commercial Items," as that term is defined at 48 C.F.R. ß2.101, 
consisting of "Commercial Computer Software" and "Commercial Computer Software Documentation," as such terms are used in 48 C.F.R. 
ß12.212 or 48 C.F.R. ß227.7202, as applicable. Consistent with 48 C.F.R. ß12.212 or 48 C.F.R. ßß227.7202-1 through 227.7202-4, as applicable, 
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users 
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein. 
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if 
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.



     3

Contents

Preface .......................................................................................................................................... 4

1 About LiveCycle Forms Transformations .................................................................................. 6

2 Button Object............................................................................................................................... 7

3 Check Box Object ....................................................................................................................... 11

4 Circle Object ............................................................................................................................... 15

5 Content Area Object .................................................................................................................. 16

6 Date/Time Field Object ............................................................................................................. 17

7 Decimal Field Object.................................................................................................................. 22

8 Drop-down List Object .............................................................................................................. 27

9 Email Submit Button Object ..................................................................................................... 32

10 HTTP Submit Button Object...................................................................................................... 36

11 Image Object .............................................................................................................................. 40

12 Image Field Object..................................................................................................................... 42

13 Line Object ................................................................................................................................. 46

14 List Box Object ........................................................................................................................... 47

15 Numeric Field Object ................................................................................................................. 52

16 Page Object ................................................................................................................................ 57

17 Password Field Object ............................................................................................................... 58

18 Radio Button Object .................................................................................................................. 63

19 Rectangle Object........................................................................................................................ 67

20 Reset Button Object................................................................................................................... 69

21 Subform Object.......................................................................................................................... 73

22 Text Object ................................................................................................................................. 76

23 Text Field Object........................................................................................................................ 78

24 Endnotes..................................................................................................................................... 83



     4

Preface

This Transformation Reference identifies which Adobe® LiveCycle™ Designer 7.0 properties are supported 
by various web browsers. Use this reference for forms developed in LiveCycle Designer and rendered by 
Adobe LiveCycle Forms into HTML format. 

What’s in this reference?
This reference includes a table for each object that is available in the Standard library in LiveCycle 
Designer. The table lists the LiveCycle Designer properties and the LiveCycle Forms browser 
transformations. 

Who should read this guide?
This reference is intended for form developers who create forms that are rendered in HTML format and 
who need to understand which LiveCycle Designer properties are supported by different browsers. 

Related documentation
In addition to this reference, the following resources provide information about LiveCycle Forms.
 

For information about See

Understanding how to use the LiveCycle Forms APIs 
to create custom applications

Developing Custom Applications

Installing, configuring, and administering in a 
development and run-time environment

Installing and Configuring LiveCycle for JBoss

Installing and Configuring LiveCycle for WebSphere

Installing and Configuring LiveCycle for WebLogic

The Form Server Module API, including a description 
and explanation of its classes and methods

Form Server Module API Reference

The XML Form Module API, including a description 
and explanation of its classes and methods

XML Form Module API Reference

The new features in this product release What’s New

The LiveCycle Designer form objects and properties, 
as well as scripting in LiveCycle Designer

LiveCycle Designer Help 



Adobe LiveCycle Forms Preface
Transformation Reference  Related documentation     5

The Adobe XML Form Object Model, which includes 
the LiveCycle Designer scripting objects, properties, 
and methods

Adobe XML Form Object Model Reference 

www.adobe.com/devnet/livecycle
/designing_forms.html

Patch updates, technical notes, and additional 
information on this product version

www.adobe.com/support/products/enterprise
/index.html

For information about See

http://www.adobe.com/devnet/livecycle/designing_forms.html
http://www.adobe.com/support/products/enterprise/index.html


     6

1 About LiveCycle Forms Transformations

This Transformation Reference is intended to be used for forms developed in LiveCycle Designer 7.0 or later. 
Although forms designed for a browser environment support the majority of the objects available in 
LiveCycle Designer, they do not support all of their properties in every type of browser. This reference lists 
all of the objects and their properties and indicates which properties are supported. The reference also 
lists the scripting properties, methods, and events that are supported for some of the objects.

LiveCycle Forms should support any browser that follows the CSS2 specification. Since browsers vary 
widely in their support of CSS2 and older browsers provide no support at all, several browsers and generic 
user agents have been targeted with their own specific transformation types. A special accessible 
transformation is also available for Microsoft® Internet Explorer 5.0 and later browsers. Internet Explorer 
browsers on the Apple® Mac OS® platform render as XHTML.

Note: LiveCycle Forms 7.2 does not support tables in form designs rendered as HTML forms.

How to use this reference
Each table is devoted to a single object that is available in the Standard library in LiveCycle Designer. The 
properties for each object are listed down the left column, organized by the palette in which they appear. 
For some objects, the supported scripting methods, properties, and events are also listed down the left 
column. The LiveCycle Forms browser transformations are listed across the top. The browser support for 
each property, method, and event is identified as described in the legend.

This guide includes only those scripting properties, methods, and events that are available in HTML clients. 
For a complete list of the Adobe XML Form Object Model scripting objects, properties, and methods, see 
the Adobe XML Form Object Model Reference guide on the LiveCycle Developer Center at 
www.adobe.com/devnet/livecycle/designing_forms.html. For a complete list of the scripting events, 
including descriptions and examples, see LiveCycle Designer Help.

Formats supported

HTML 4 (Low end) 

MSDHTML Microsoft Internet Explorer 5.0 and 6.0 

XHTML Apple Safari 1.2, Mozilla FireFox 1.0, and Netscape Navigator 7.2 

Note: Netscape 7.2 is not supported on the Mac OS platform.

AHTML Microsoft Internet Explorer 5.0 and 6.0

Legend

Y Implemented

N Not supported by browser

(123) Endnotes available

(property) Only supports the mentioned property. For example: height, width, protected.

(Not property) Does not support the mentioned property. For example: Not Dotted Stroke.

http://www.adobe.com/devnet/livecycle/designing_forms.html


     7

2 Button Object

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders 

Edges Style N Y Y N Y Y 

Edges Thickness N Y Y N Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

N Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y (Solid) Y (Solid) Y (Solid) N Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N N N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y N Y Y 

Height Y (5) Y Y N Y Y 



Adobe LiveCycle Forms Button Object
Transformation Reference       8

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y Y Y Y Y

Control Type Y Y Y Y Y Y

Presence Y Y Y Y Y Y

Locale N N N N N N

Object > Execute

Connection Y Y Y Y Y Y

Run At Y (Server) Y (Server) Y (Server) Y (Server) Y (Server) Y (Server)

Re-merge Form Data Y (Server) Y (Server) Y (Server) Y (Server) Y (Server) Y (Server)

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify) 

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Button Object
Transformation Reference       9

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Button Object
Transformation Reference       10

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events 

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     11

3 Check Box Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style N Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) N N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Check Box Object
Transformation Reference       12

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N N N N N N

States N N N N N N

Size N Y Y Y Y N

Presence Y Y Y Y Y Y

Locale N N N N N N

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

Override Message N N N N N N

Validation Script Message Y Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Check Box Object
Transformation Reference       13

Object > Binding

Name Y Y Y Y Y Y

Default Binding (Open, 
Save, Submit)

Y Y Y Y Y Y

On Value Y Y Y Y Y Y

Off Value Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Check Box Object
Transformation Reference       14

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     15

4 Circle Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

N/A

Border palette

N/A

Layout palette

Size & Position 

X N Y N N N N

Y N Y N N N N

Width N Y N N N N

Height N Y N N N N

Anchor N Y N N N N

Rotate N N N N N N

Margins 

Left N Y N N N N

Top N Y N N N N

Right N Y N N N N

Bottom N Y N N N N

Object > Draw

Type N Y N N N N

Appearance N Y N N N N

Start N Y N N N N

Sweep N Y N N N N

Line Style N Y N N N N

Fill N Y 
(Not Radial)

N N N N

Presence N Y N N N N

Paragraph palette

N/A



     16

5 Content Area Object

LiveCycle Designer 
properties 

HTML 4
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 

Accessibility palette

N/A

Border palette

N/A

Font palette

N/A

Layout palette

Size & Position 

X N Y Y Y Y Y

Y N Y Y Y Y Y

Width N Y Y Y Y Y

Height N Y Y Y Y Y

Object > Content Area

Name Y Y Y Y Y Y

Flow Direction Y Y Y Y Y Y

Paragraph palette

N/A



     17

6 Date/Time Field Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style Y Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Date/Time Field Object
Transformation Reference       18

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) (2)

Y (Not 
None) (2)

Y Y Y (Not 
None) (2)

Control Type Y Y Y Y Y Y

Display Pattern N N N N N N

Edit Pattern N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Date/Time Field Object
Transformation Reference       19

Empty Message Y Y Y Y Y Y

Calculation Script Y Y Y Y Y Y

Runtime Property Y Y Y Y Y Y

Override Message N N N N N N

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding 

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Data Pattern Y Y Y Y Y Y

Data Format Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Date/Time Field Object
Transformation Reference       20

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Date/Time Field Object
Transformation Reference       21

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     22

7 Decimal Field Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style Y Y Y Y Y Y

Edges Thickness N Y Y Y Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Decimal Field Object
Transformation Reference       23

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) (2)

Y (Not 
None) (2)

Y Y Y (Not
None) (2)

Display Pattern N N N N N N

Edit Pattern N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Decimal Field Object
Transformation Reference       24

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Data Pattern Y Y Y Y Y Y

Data Format Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Decimal Field Object
Transformation Reference       25

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Decimal Field Object
Transformation Reference       26

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     27

8 Drop-down List Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style N Y Y Y Y Y

Edges Thickness N Y Y Y Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Drop-down List Object
Transformation Reference       28

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) 

Y (Not 
None)

Y Y Y (Not 
None)

List Items Y Y Y Y Y Y

Allow Custom Text 
Entry

N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Drop-down List Object
Transformation Reference       29

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Specify Item Values Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N N 
(Left Only)

Y 
(Not Justify)

N 
(Left Only)

Y 
(Not Justify)

N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Drop-down List Object
Transformation Reference       30

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

addItem N Y Y Y Y Y

clearItems N Y Y Y Y Y

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Drop-down List Object
Transformation Reference       31

Events

calculate N Y Y Y Y Y

change N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     32

9 Email Submit Button Object

The Email Submit Button object is rendered as a submit button in HTML. 

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders

Edges Style N Y Y Y Y Y

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 



Adobe LiveCycle Forms Email Submit Button Object
Transformation Reference       33

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y Y Y Y Y

Presence Y Y Y Y Y Y

Locale N N N N N N

Email Address N N N N N N

Email Subject N N N N N N

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Email Submit Button Object
Transformation Reference       34

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Email Submit Button Object
Transformation Reference       35

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

preSubmit N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     36

10 HTTP Submit Button Object

The HTTP Submit Button object is rendered as a submit button in HTML. 

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders 

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 



Adobe LiveCycle Forms HTTP Submit Button Object
Transformation Reference       37

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y Y Y Y Y 

Presence Y Y Y Y Y Y

Locale N N N N N N

URL N N N N N N

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms HTTP Submit Button Object
Transformation Reference       38

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms HTTP Submit Button Object
Transformation Reference       39

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

preSubmit N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     40

11 Image Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

N/A

Border palette

Borders (6)

Edges Style N N N N N N

Edges Thickness N N N N N N

Corners N N N N N N

Radius N N N N N N

Background Fill 

Style N Y (Solid) Y (Solid) Y Y N

Color (FillStart) N N N Y Y N

Color (FillEnd) N Y Y Y Y Y

Font palette

N/A

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y

Height Y (5) Y Y Y Y Y

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N 

Top N Y Y Y Y N 

Right N Y Y Y Y N 

Bottom N Y Y Y Y N 



Adobe LiveCycle Forms Image Object
Transformation Reference       41

Object > Draw

Type N Y Y Y Y N

URL Y Y Y Y Y N

Embed Image Data N N N N N N

Sizing Y Y Y Y Y N

Presence N Y Y Y Y N

Paragraph palette

N/A

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     42

12 Image Field Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius No No No No No No

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 



Adobe LiveCycle Forms Image Field Object
Transformation Reference       43

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type N Y Y Y Y Y

URL Y Y Y Y Y Y

Embed Image Data N N N N N N

Sizing Y Y Y Y Y Y

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Import Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Image Field Object
Transformation Reference       44

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Image Field Object
Transformation Reference       45

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     46

13 Line Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

N/A

Border palette

N/A

Font palette

N/A

Layout palette

Size & Position 

X N Y Y Y Y N

Y N Y Y Y Y N

Width N Y Y Y Y Y

Height N Y Y Y Y Y

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N 

Top N Y Y Y Y N 

Right N Y Y Y Y N 

Bottom N Y Y Y Y N 

Object > Draw

Type N Y Y Y Y N

Appearance N Y Y 
(Horizontal, 

Vertical)

Y 
(Horizontal, 

Vertical)

Y 
(Horizontal, 

Vertical)

N

Line Style N Y Y Y Y N

Presence N Y Y Y Y N

Paragraph palette

N/A



     47

14 List Box Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style N Y Y Y Y Y

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color 
only)

Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms List Box Object
Transformation Reference       48

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y 
(Not None)

Y 
(Not None)

Y Y Y 
(Not None)

List Items Y Y Y Y Y Y

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Value

Type Y Y Y Y Y Y

Default Y Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms List Box Object
Transformation Reference       49

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Specify Item Values Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N N 
(Left Only)

Y 
(Not Justify)

N 
(Left Only)

Y 
(Not Justify)

N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms List Box Object
Transformation Reference       50

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

addItem N Y Y Y Y Y

clearItems N Y Y Y Y Y

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms List Box Object
Transformation Reference       51

Events

calculate N Y Y Y Y Y

change N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     52

15 Numeric Field Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style Y Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Numeric Field Object
Transformation Reference       53

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) (2)

Y (Not 
None) (2)

Y Y Y (Not 
None) (2)

Display Pattern N N N N N N

Edit Pattern N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Numeric Field Object
Transformation Reference       54

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Data Pattern Y Y Y Y Y Y

Data Format Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Numeric Field Object
Transformation Reference       55

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Numeric Field Object
Transformation Reference       56

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     57

16 Page Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 

Accessibility palette

N/A

Border palette

N/A

Font palette

N/A

Layout palette

N/A

Object > Binding

N/A

Page palette

Name Y Y Y Y Y Y

Size Y Y Y Y Y Y

Orientation Y Y Y Y Y Y

Landscape 

Restrict Page 
Occurrence

Y Y Y Y Y Y

Include Page in 
Numbering

Y Y Y Y Y Y

Paragraph palette

N/A



     58

17 Password Field Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style Y Y Y Y Y Y

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Password Field Object
Transformation Reference       59

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) (2)

Y (Not 
None) (2)

Y Y Y (Not 
None) (2)

Password Display 
Character

N N N N N N

Edit Pattern N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Password Field Object
Transformation Reference       60

Object > Value

Type N Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Data Pattern Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Password Field Object
Transformation Reference       61

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Password Field Object
Transformation Reference       62

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     63

18 Radio Button Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style N Y Y Y Y Y

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style N Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) N N N Y N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 



Adobe LiveCycle Forms Radio Button Object
Transformation Reference       64

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Size Y Y Y Y Y Y

Group Y Y Y Y Y Y

On Value Y Y Y Y Y Y

Appearance (4) N N N N N N

Presence Y Y Y Y Y Y

Locale N Y Y Y Y Y

Object > Group Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

Validation Pattern N N N N N N

Validation Pattern 
Message

N N N N N N

Validation Script Message Y Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Radio Button Object
Transformation Reference       65

Object > Group Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Radio Button Object
Transformation Reference       66

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     67

19 Rectangle Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 

Accessibility palette

N/A

Border palette

N/A

Font palette

N/A

Layout palette

Size & Position 

X N Y Y Y Y N

Y N Y Y Y Y N

Width N Y Y Y Y Y

Height N Y Y Y Y Y

Anchor N Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N 

Top N Y Y Y Y N 

Right N Y Y Y Y N 

Bottom N Y Y Y Y N 

Object > Draw

Type N Y Y Y Y N

Line Style N Y Y Y Y N

Corners N Y Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

N

Fill N Y (Not 
Radial)

Y (Not Radial 
or Linear)

Y (Not Radial 
or Linear)

Y (Not Radial 
or Linear)

N

Presence N Y Y Y Y N



Adobe LiveCycle Forms Rectangle Object
Transformation Reference       68

Paragraph palette

N/A

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 



     69

20 Reset Button Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y 

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 



Adobe LiveCycle Forms Reset Button Object
Transformation Reference       70

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y Y Y Y Y

Presence Y Y Y Y Y Y

Locale N N N N N N

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Reset Button Object
Transformation Reference       71

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Reset Button Object
Transformation Reference       72

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     73

21 Subform Object

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility
HTML 

Accessibility palette

N/A

Border palette

Borders 

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y 

Corners N Y
(Rectangle)

Y
(Rectangle)

Y
(Rectangle)

Y
(Rectangle)

N

Radius N N N N N N

Background Fill 

Style N Y (Solid) Y (Solid) Y (Solid) Y (Solid) N

Fill Start N Y Y Y Y N

Fill End N Y Y Y Y Y

Font palette

N/A

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y

Height Y (5) Y Y Y Y Y

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N



Adobe LiveCycle Forms Subform Object
Transformation Reference       74

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Import/Export Bindings (Execute) N N N N N N

Repeat Subform for Each Data Item Y Y Y Y Y Y

Min Count Y Y Y Y Y Y

Max Y Y Y Y Y Y

Overflow Leader N N N N N N

Overflow Trailer N N N N N N

Object > Subform

Type Y Y Y Y Y Y

Flow Direction Y Y Y Y Y Y

Allow Page Breaks within Content N N N N N N

Place N N N N N N

Keep w/ Previous N N N N N N

Keep w/ Next N N N N N N

After N N N N N N

Presence Y Y Y Y Y Y

Locale N N N N N N

Paragraph palette

N/A

Client-side scripting supported for HTML

Properties

borderWidth N Y Y Y Y Y

borderColor N Y Y Y Y Y

fillColor N Y Y Y Y Y

instanceManager.occur.max N Y Y Y Y Y

instanceManager.occur.min N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility
HTML 



Adobe LiveCycle Forms Subform Object
Transformation Reference       75

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

validationMessage N Y Y Y Y Y

Methods

instanceManager.addInstance N Y Y Y Y Y

execCalculate N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

instanceManager.insertInstance N Y Y Y Y Y

instanceManager.moveInstance N Y Y Y Y Y

instanceManager.removeInstance N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

instanceManager.setInstances N Y Y Y Y Y

Events

initialize N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

calculate N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties, methods, 
and events 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility
HTML 



     76

22 Text Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 

Accessibility palette

N/A

Border palette

Borders (6)

Edges Style N Y Y Y Y Y 

Edges Thickness N Y Y Y Y Y 

Corners N Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

N

Radius N N N N N N

Background Fill 

Style N Y Y Y Y N

Color (FillStart) N Y Y Y Y N

Color (FillEnd) N Y Y Y Y N

Font palette

Font Y Y Y Y Y Y

Size Y Y Y Y Y Y

Baseline Shift N N N N N N

Style (4) Y Y Y Y Y Y

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y

Height Y (5) Y Y Y Y Y

Anchor Y Y Y Y Y Y

Rotate N N N N N N



Adobe LiveCycle Forms Text Object
Transformation Reference       77

Margins 

Left N Y Y Y Y N 

Top N Y Y Y Y N 

Right N Y Y Y Y N 

Bottom N Y Y Y Y N 

Object > Draw

Type N Y Y Y Y N

Presence N Y Y Y Y N

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y (Not 
Justify)

Y (Not 
Justify)

Y (Not 
Justify)

Y (Not 
Justify)

Y (Not 
Justify)

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Indents 

Left N Y Y Y Y Y

Right N Y Y Y Y Y

First Y Y Y Y Y Y

By Y Y Y Y Y Y

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibilit
y HTML 



     78

23 Text Field Object

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 

Accessibility palette

Tooltip N Y Y Y Y Y

Screen Reader Precedence N N N N N N

Custom Screen Reader 
Text

N N N N N Y

Border palette

Borders (6)

Edges Style Y Y Y Y Y Y

Edges Thickness N Y Y Y Y Y

Corners Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Y 
(Rectangle)

Radius N N N N N N

Background Fill 

Style Y Y (Solid) Y (Solid) Y (Solid) Y (Solid) Y (Solid)

Color (FillStart) N Y Y N Y Y

Color (FillEnd) Y N N Y N N

Font palette

Caption 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y Y Y Y Y N

Value 

Font Y Y Y Y Y N

Size Y Y Y Y Y N

Baseline Shift N N N N N N

Style (3) Y (Color) Y (Color) Y (Color) Y (Color) Y (Color) N



Adobe LiveCycle Forms Text Field Object
Transformation Reference       79

Layout palette

Size & Position 

X Y (5) Y Y Y Y N (1)

Y Y (5) Y Y Y Y N (1)

Width Y (5) Y Y Y Y Y 

Height Y (5) Y Y Y Y Y 

Width Expand to fit N N N N N N

Height Expand to fit N N N N N N

Anchor Y Y Y Y Y Y

Rotate N N N N N N

Margins 

Left N Y Y Y Y N

Top N Y Y Y Y N

Right N Y Y Y Y N

Bottom N Y Y Y Y N

Caption 

Position Y Y Y Y Y N

Reserve N Y Y Y Y N

Object > Field

Type Y Y Y Y Y Y

Appearance (4) N Y (Not 
None) (2)

Y (Not 
None) (2)

Y Y Y (Not 
None) (2)

Allow Multiple Lines Y Y Y Y Y Y

Allow Plain Text Only N N N N N N

Limit Length Y Y Y Y Y Y

Max Chars Y Y Y Y Y Y

Display Pattern N N N N N N

Edit Pattern N N N N N N

Presence Y Y Y Y Y Y

Locale N N N N N N

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Text Field Object
Transformation Reference       80

Object > Value

Type N Y Y Y Y Y

Default Y Y Y Y Y Y

Empty Message Y Y Y Y Y Y

Override Message N N N N N N

Validation Pattern Y Y Y Y Y Y

Validation Pattern 
Message

Y Y Y Y Y Y

Validation Script Message Y Y Y Y Y Y

Object > Binding

Name Y Y Y Y Y Y

Default Binding Y Y Y Y Y Y

Data Pattern Y Y Y Y Y Y

Data Format Y Y Y Y Y Y

Import/Export Bindings Y Y Y Y Y Y

Paragraph palette

Caption 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N Y Y Y Y N

Value 

HorizontalAlign (left, 
right, center, justify)

N Y Y Y Y N

VerticalAlign (top, 
middle, bottom)

N N N N N N

Indents 

Left N Y Y Y Y N

Right N Y Y Y Y N

First Y Y Y Y Y N

By Y Y Y Y Y N

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Text Field Object
Transformation Reference       81

Spacing 

Above N N N N N N

Below N N N N N N

Line Spacing N Y Y Y Y N

Client-side scripting supported for HTML

Properties 

access N Y Y Y Y Y

borderColor N Y Y Y Y Y

borderWidth N Y Y Y Y Y

fillColor N Y Y Y Y Y

fontColor N Y Y Y Y Y

formattedValue N Y Y Y Y Y

h N Y Y Y Y Y

index N Y Y Y Y Y

mandatory N Y Y Y Y Y

name N Y Y Y Y Y

parent N Y Y Y Y Y

presence N Y Y Y Y Y

rawValue N Y Y Y Y Y

validationMessage N Y Y Y Y Y

w N Y Y Y Y Y

x N Y Y Y Y Y

y N Y Y Y Y Y

Methods 

execCalculate N Y Y Y Y Y

execEvent N Y Y Y Y Y

execInitialize N Y Y Y Y Y

execValidate N Y Y Y Y Y

resolveNode N Y Y Y Y Y

resolveNodes N Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



Adobe LiveCycle Forms Text Field Object
Transformation Reference       82

Events

calculate N Y Y Y Y Y

click N Y Y Y Y Y

enter N Y Y Y Y Y

exit N Y Y Y Y Y

initialize N Y Y Y Y Y

mouseDown N Y Y Y Y Y

mouseUp N Y Y Y Y Y

validate N Y Y Y Y Y

LiveCycle Designer 
properties 

HTML 4 
(Low End)

MSDHTML 
IE 5 & 6

XHTML 
Netscape 7

XHTML 
Safari

XHTML 
FireFox

Accessibility 
HTML 



     83

24 Endnotes

#
Transformation/ 
Browser Objects Properties Notes

1 AHTML All except Page Layout/Size & 
Position:

● X

● Y

Objects are laid out in one column.

2 IE, Netscape Date-Time Field, 
Decimal Field, 
Numeric Field, 
Password Field

Appearance None option appears as sunken.

3 All All except:

● Circle

● Content Area

● Line

● Page

● Rectangle

● Image

● Subform 

Font/Style/Underline Only single underlines are supported in 
HTML.

4 All All except:

● Circle

● Content Area

● Line, Page

● Rectangle

● Image

● Subform 

Object/Field/ 
Appearance

Custom appearances may not be 
supported in HTML.

5 HTML 4 All except Page Layout/Size & 
Position:

● X

● Y

● Width

● Height

Size and position approximated using 
HTML tables.

6 MSDHTML, 
XHTML

All fields and Text 
object

Border Text in HTML may appear to be shifted 
to the left because the border extends 
inward. This behavior occurs when you 
use the default even-handed borders. To 
ensure you have the minimum amount 
of margin, adjust the margins to the size 
of the border width.



bbc

Adobe® User Management
July 2006 Version 1.23

Developing User Management Service Providers



© 2006 Adobe Systems Incorporated. All rights reserved.

Adobe® User Management 1.23 Developing User Management Service Providers for Microsoft® Windows®, Linux®, and UNIX®
Edition 1.2, July 2006

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished 
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part 
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, 
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected 
under copyright law even if it is not distributed with software that includes an end user license agreement. 

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or 
inaccuracies that may appear in the informational content contained in this guide. 

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The 
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to 
obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual 
organization.

Adobe, the Adobe logo, and LiveCycle are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States 
and/or other countries. 

IBM and WebSphere are trademarks of International Business Machines Corporation in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group in the US and other countries.

Microsoft and Windows are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are the property of their respective owners.

This product contains either BISAFE and/or TIPEM software by RSA Data Security, Inc.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Portions Copyright (C) 1991, 1999 Free Software Foundation, Inc. The JBOSS, OmniORB, JacORB, and SwarmCache libraries are licensed under 
the GNU Library General Public License, a copy of which is included with this software.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. 

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, 
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. 
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, 
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users 
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein. 
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if 
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.



     3

Contents

Preface .......................................................................................................................................... 5
What’s in this guide? ..................................................................................................................................................................... 5
Who should read this guide? ..................................................................................................................................................... 5
Related documentation ............................................................................................................................................................... 5

1 Introduction ................................................................................................................................. 6
Understanding the authentication process.......................................................................................................................... 6
Creating custom service providers .......................................................................................................................................... 7
Including the User Management SPI JAR file ....................................................................................................................... 7

2 Creating Custom Authentication Providers .............................................................................. 8
About custom authentication providers ............................................................................................................................... 8

Examining the authentication process ............................................................................................................................ 9
User Management SPI interfaces .....................................................................................................................................10
Sample authentication provider ......................................................................................................................................10

Retrieving authentication values............................................................................................................................................10
Retrieving configuration information...................................................................................................................................11
Performing the authentication operation...........................................................................................................................12
Sending authentication results to User Management....................................................................................................14

3 Creating Custom Directory Service Providers......................................................................... 15
Sample directory service provider .........................................................................................................................................15
Directory service provider interfaces ....................................................................................................................................16
Implementing the directory service provider interfaces ...............................................................................................16

DirectoryPrincipalProvider interface...............................................................................................................................17
DirectoryUserProvider interface.......................................................................................................................................21
DirectoryGroupProvider interface ...................................................................................................................................21

Connecting to the directory .....................................................................................................................................................23
Getting the directory properties ......................................................................................................................................24

GroupConfigBO interface .............................................................................................................................................24
UserConfigBO interface.................................................................................................................................................24

Testing the connection........................................................................................................................................................24
Configuring User Management for custom directory service providers .................................................................25

4 Registering Custom Service Providers..................................................................................... 26
User Management configuration settings ..........................................................................................................................26

XML configuration file..........................................................................................................................................................27
XML element types in the configuration file................................................................................................................28

Defining domains for custom service providers ...............................................................................................................28
Configuring User Management to use custom authentication providers ..............................................................29

Identifying authentication providers..............................................................................................................................29
Configuring domains for authentication providers ..................................................................................................31

Configuring User Management to use directory service providers...........................................................................33

5 Deploying Custom Service Providers....................................................................................... 35
Packaging your custom service provider ............................................................................................................................35

Repackaging the LiveCycle EAR file ................................................................................................................................35
Deploying custom service providers ..............................................................................................................................36

Index ........................................................................................................................................... 38



     4

List of Examples

Example 2.1 Retrieving authentication values...............................................................................................................................11
Example 2.2 Retrieving User Management configuration information................................................................................12
Example 2.3 Performing an authentication operation................................................................................................................13
Example 2.4 Returning authentication results in an AuthResponseImpl object ...............................................................14
Example 3.1 Entry point for user services.........................................................................................................................................17
Example 3.2 Representing the state information..........................................................................................................................17
Example 3.3 Determining the state....................................................................................................................................................19
Example 3.4 Collecting records............................................................................................................................................................19
Example 3.5 Setting the principal information ..............................................................................................................................20
Example 3.6 Implementing the DirectoryUserProvider interface ...........................................................................................21
Example 3.7 Group state information ...............................................................................................................................................21
Example 3.8 Retrieving group members..........................................................................................................................................22
Example 4.1 XML configuration file....................................................................................................................................................27
Example 4.2 Defining a domain...........................................................................................................................................................28
Example 4.3 Identifying an authentication provider ...................................................................................................................30
Example 4.4 Configuring a domain for an authentication provider ......................................................................................31
Example 4.5 Configuring a domain....................................................................................................................................................32
Example 4.6 Configuring the domain to use custom directory service providers ............................................................33
Example 4.7 Configuring the custom group provider.................................................................................................................34
Example 4.8 Configuring the custom user provider ....................................................................................................................34



     5

Preface

This guide provides information about the use of Adobe®User Management SPI, which provides a means 
by which you can create custom service providers for User Management.

What’s in this guide?
This document provides information about the programmatic interfaces and classes that are used to 
create custom service providers for User Management. In addition, this guide discusses how to register 
and deploy custom service providers. This guide is a companion guide to User Management SPI Reference. 

Who should read this guide?
This guide is intended for Java 2 Enterprise Edition (J2EE) developers who are responsible for developing 
custom service providers for User Management.

Related documentation
In addition to this guide, the User Management SPI Reference describes the interfaces and classes that are 
located in the User Management SPI. You can learn more about other Adobe services and products at 
www.adobe.com and http://partners.adobe.com/public/developer/main.html.

www.adobe.com
http://partners.adobe.com/public/developer/main.html


     6

1 Introduction

The Adobe User Management SPI is a Java API that enables you to create custom service providers for 
Adobe User Management. User Management enables administrators to maintain a database for all users 
and groups, synchronized with one or more third-party user directories. User Management provides 
authentication, authorization, and user management for LiveCycle products, including Adobe LiveCycle™ 
Workflow, Adobe LiveCycle Forms, and Adobe LiveCycle Form Manager. For more information about User 
Management, see User Management Help. 

A User Management service provider consists of a custom authentication provider and a custom directory 
provider. A custom authentication provider authenticates users, and a directory provider stores user 
information. Using the User Management SPI, you can extend the User Management default functionality 
that is related to authenticating users and storing user information.

Understanding the authentication process
Authentication providers receive authentication requests from User Management and provide responses 
to it. 

When User Management receives an authentication request (for example, a user attempts to log in), it 
passes user information to the authentication provider to authenticate. User Management receives the 
results from the authentication provider after it authenticates the user.

The following diagram shows the interaction among an end user attempting to log in, User Management, 
and an authentication provider.

The following table describes each step of the process and indicates the SPI members involved. 

Step Description

1 A user attempts to log into a LiveCycle product that invokes User Management. The user 
specifies a user name and password. 

2 User Management sends the user name and password, as well as configuration information, 
to the authentication provider.

3

21

45

User
Management

Authentication
Provider

User StoreClient Web
Broswer

J2EE Application Server



Adobe User Management Introduction
Developing User Management Service Providers  Creating custom service providers     7

Creating custom service providers
You use the User Management SPI to create a custom service provider by performing the following tasks: 

1. Create a custom authentication provider. For information, see “Creating Custom Authentication 
Providers” on page 8.

2. Create a custom directory provider. For information, see “Creating Custom Directory Service Providers” 
on page 15.

3. Configure the User Management XML configuration file to recognize the new service provider. For 
information, see “Registering Custom Service Providers” on page 26.

4. Deploy the custom service provider. For information, see “Deploying Custom Service Providers” on 
page 35.

Including the User Management SPI JAR file
User Management SPI consists of two Java packages: 

● com.adobe.idp.um.spi.authentication

● com.adobe.idp.um.spi.directoryservices

You use classes and interfaces located within these packages to create custom service providers. For 
information about these packages and their contents, see the API Reference. 

The User Management SPI is packaged in a JAR file named um-spi.jar. You must copy the JAR file into your 
application’s class path in order to use the User Management SPI in your Java project.

The um-spi.jar file is installed in the following directory when User Management is installed:

C:\Adobe\LiveCycle\components\um\<app_server>\lib\adobe

where C:\ is the drive on which User Management is installed, and app_server is the J2EE application on 
which User Management is deployed. For example, assume that User Management is deployed on JBoss. 
In this situation, the um-spi.jar file is in the following directory: 

C:\Adobe\LiveCycle\components\um\jboss\lib\adobe

To access the interfaces and classes in the um-spi.jar file, add the following import statements to your Java 
project: 

import com.adobe.idp.um.spi.authentication.*;
import com.adobe.idp.um.spi.directoryservices.*;

3 The authentication provider connects to the user store and authenticates the user.

4 The authentication provider returns the results to User Management.

5 User Management either lets the user log in or denies access to the product.

Step Description



     8

2 Creating Custom Authentication Providers

This chapter explains how to use the User Management SPI to develop custom authentication providers 
that are based on user name and password authentication.

By default, User Management supports JAAS and LDAP authentication. However, by using the User 
Management SPI, you can create a custom authentication provider and then configure User Management 
to use the custom authentication provider to replace its default authentication provider. You can also 
configure User Management to use the custom authentication provider in addition to the default 
authentication provider. 

A custom authentication provider is dependent on a custom directory service provider; therefore, you 
must create a custom directory service provider when you create a custom authentication provider. User 
information that is authenticated by a custom provider is placed in a data store that is accessed by a 
customer directory service provider. For information, see “Creating Custom Directory Service Providers” 
on page 15. 

This chapter provides the following information. 

About custom authentication providers
The User Management SPI provides a Java API for developing custom authentication providers. To 
develop a custom authentication provider, create a Java class that implements the AuthProvider 
interface that belongs to the com.adobe.idp.um.spi.authentication package. This class must 
contain a method named authenticate, which is called by User Management to authenticate users. 

User Management passes user and configuration values to the authenticate method when a user 
attempts to log in. A user name and the corresponding password are passed within a java.util.Map 
object. Configuration information is passed within a java.util.List object. The following code 
fragment shows the method signature of the authenticate method:

public AuthResponse authenticate(Map credential, List authConfigs)

This method returns an AuthResponse object that specifies whether the user was authenticated. For 
information, see “Sending authentication results to User Management” on page 14.

Topic Description See

About custom authentication 
providers

Explains how to use the User Management SPI to develop 
a custom authentication provider.

page 8

Retrieving authentication 
values

Explains how to retrieve user values that are passed from 
User Management to the custom authentication provider.

page 10

Retrieving configuration 
information 

Explains how to retrieve User Management configuration 
information that is used in the authentication process.

page 11

Performing the authentication 
operation

Explains how to perform an authentication operation. 
This section also provides an example of an authentication 
operation by using a tab-delimited file. 

page 12

Sending authentication results 
to User Management

Explains how to send authentication results to User 
Management. 

page 14



Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  Examining the authentication process     9

Examining the authentication process
This section examines in more detail the authentication process that was introduced earlier in this guide. 
For information, see “Understanding the authentication process” on page 6. 

During most authentication steps, User Management invokes methods of your custom authentication 
provider. For example, User Management invokes the authenticate method after a user attempts to 
log in. The following table explains the relationship between the authentication process and the User 
Management SPI, and specifies the SPI methods involved in each step of the authentication process.

Step Description SPI member used

1 A user attempts to log into a 
LiveCycle product that invokes 
User Management. The user 
specifies a user name and 
password. 

No SPI methods are invoked.

2 User Management sends the 
user name and password, as 
well as configuration 
information, to the 
authentication provider.

User Management invokes the authenticate method that 
is located in an authentication provider. The authenticate 
method requires a java.util.Map object that contains user 
information and a java.util.List object that contains 
configuration information as arguments. For information, see 
“Retrieving authentication values” on page 10.

The configuration information contained in the 
java.util.List object is a collection of one or more 
AuthConfigBO objects. For information, see “Retrieving 
configuration information” on page 11.

3 The authentication provider 
connects to the user store 
and authenticates the user.

You are required to develop Java code that performs the 
authentication. For example, you can authenticate a user by 
using a third-party API, such as the Java JDBC API, that 
interacts with a specified user store.

This chapter authenticates a user by searching a tab-delimited 
file that contains user information. For information, see 
“Performing the authentication operation” on page 12.

4 The authentication provider 
returns the results to User 
Management.

The authentication provider stores the results in an 
AuthResponse object. The authenticate method returns 
the AuthResponse object to User Management. For 
information, see “Sending authentication results to User 
Management” on page 14.

5 User Management either lets 
the user log in or denies the 
user access to the product.

No SPI methods are invoked.



Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  User Management SPI interfaces     10

User Management SPI interfaces
The following table lists and describes the User Management SPI interfaces and classes that are used to 
create a custom authentication provider.

Sample authentication provider
User Management provides a sample implementation of the AuthProvider interface. The sample 
demonstrates how service providers interact with User Management. The sample Java code is provided in 
the file named FBAuthenticationProviderImpl.java. You can retrieve the User Management sample from 
the Adobe LiveCycle Developer Center website at 
http://partners.adobe.com/public/developer/livecycle/index_samples.html.

Tip: You may find it useful to print the sample code and refer to it as you read this chapter.

Retrieving authentication values
User Management passes user and configuration information to your authentication provider’s 
authenticate method. User information is passed in by using a java.util.Map object, and 
configuration information is passed in by using a java.util.List object.

You retrieve the user information by invoking the java.util.Map object‘s get method. Pass the 
following keys to the get method to retrieve user information.

Interface Description

AuthProvider This interface is the primary interface that your custom authentication provider 
must implement. 

AuthConfigBO This interface defines a container for storing configuration information about 
an authentication provider. 

AuthResponse This interface is used to communicate authentication results to User 
Management. If the authentication provider successfully authenticates the 
user, it communicates the success to User Management along with the 
authenticated user name, user domain, and authentication type.

Likewise, this interface is used to inform User Management that authentication 
was unsuccessful. 

AuthResponseImpl This class is used to create an object instance of the AuthResponse interface.

Key name Description

AuthProvider.USER_NAME The user name to authenticate.

AuthProvider.PASSWORD The password that corresponds to the user name.

AuthProvider.AUTH_TYPE The type of authentication to perform.

The type must be AUTHTYPE_USERNAME_PWD. If no type is 
specified, the type AUTHTYPE_USERNAME_PWD is assumed. If a 
different type is specified, the authentication provider must 
respond with an indication that the parameters were not 
understood. 

http://partners.adobe.com/public/developer/livecycle/index_samples.html


Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  Retrieving configuration information     11

The following example retrieves authentication values from the java.util.Map object that is passed to 
the authentication provider. The java.util.Map object’s get method is used to retrieve each value.

Example 2.1 Retrieving authentication values

public AuthResponse authenticate(Map credential, List authConfigs){

//Declare string variables to store user information
String userName = null;
String password = null;
String authType = null;

// Retrieve the user values passed from User Management
if (credential.containsKey(AuthProvider.USER_NAME))

userName = (String) credential.get(AuthProvider.USER_NAME); 
if(credential.containsKey(AuthProvider.PASSWORD))

password = (String)credential.get(AuthProvider.PASSWORD);
if(credential.containsKey(AuthProvider.AUTH_TYPE))

authType = (String)credential.get(AuthProvider.AUTH_TYPE);
//More logic

Note: The java.util.Map object may also include the keys named AuthProvider.CONTEXT and 
AuthProvider.ENCODED_KERBEROS_TICKET. Your authentication provider can ignore these 
keys.

Retrieving configuration information
A custom authentication provider can retrieve configuration information that is passed by User 
Management. This information represents domain information specified in the User Management 
configuration settings. For information about domain information, see “Defining domains for custom 
service providers” on page 28.

User Management configuration settings can include required connection values for the data store as well 
as other information specific to your authentication provider. The domain information includes the name 
of the domain in which you are authenticating. You must retrieve the domain name for each 
authentication operation that is performed.

Multiple domains can exist for one authentication provider. It is the authentication provider’s 
responsibility to try them all and select the one that succeeds. The domain name is specified in the 
response that is sent to User Management. For information, see “Sending authentication results to User 
Management” on page 14.

The java.util.List object that was passed to the authentication provider’s authenticate method 
contains an AuthConfigBO object for each domain that is configured for a specific authentication 
provider. An AuthConfigBO object is a container for domain configuration information that applies to a 
specific authentication provider.

Iterate through the java.util.List object to retrieve all AuthConfigBO objects by creating an 
Iterator object. To create an Iterator object, call the java.util.List object’s iterator 
method, as shown in the following code fragment:

Iterator it = authConfigs.iterator();



Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  Performing the authentication operation     12

After you create an Iterator object, reference the individual AuthConfigBO objects by invoking the 
Iterator object’s next method and casting the return value, as shown in the following code fragment:

AuthConfigBO conf = (AuthConfigBO)it.next();

Call the AuthConfigBO object’s getCustomConfiguration method to get a java.util.Map object 
that contains key-value pairs of string objects representing the first-level custom configuration settings. 
You cannot use the java.util.Map object to modify configuration settings.

You get the value of a specific key by invoking the java.util.Map object’s get method and passing a 
string value that represents the key name. However, to retrieve a key value, you must know the key name 
that is in the User Management XML configuration file (an example of getting the value of an XML key 
named FILENAME is shown in the following code example). For information about the User Management 
XML configuration file, see “User Management configuration settings” on page 26.

The following example retrieves configuration information from the java.util.List object named 
authConfigs that was passed to the authentication provider’s authenticate method. Notice that a 
file name value is retrieved. This value is stored in a string variable named filename and is used in the 
implementation of this authentication provider.

Example 2.2 Retrieving User Management configuration information

//AuthConfigs is an authenticate parameter
//Create an Iterator object
Iterator it = authConfigs.iterator();

while(it.hasNext()){
//Get an AuthConfigBO object
AuthConfigBO conf = (AuthConfigBO)it.next();

//Retrieve a java.util.Map object that stores User Management 
//configuration information
java.util.Map configSettings = conf.getCustomConfiguration();

//Get a value of the FILENAME key
String filename = (String) configSettings.get("FILENAME");

//Get the domain name
String domainName = conf.getDomainName();

//Do something with filename and domainName
}

Performing the authentication operation
After you retrieve user information and required configuration values, you can perform an authentication 
operation.

You can use a third-party Java API to interact with the authentication server provider you are using. For 
example, you can use the Java Simple Authentication and Security Layer (SASL) API to perform 
authentication operations.

For the purposes of this chapter, an authentication operation is performed by using a 0-based, 
tab-delimited file. If the specified user name, password, and domain values are located in the file, the 
authentication operation is successful. Otherwise, the authentication operation is unsuccessful.



Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  Performing the authentication operation     13

The following table describes the tab-delimited file.
 

In the following code example, a user-defined method named checkValues searches a tab-delimited file 
for the specified user name, password, and domain values. All three values are passed to this method as 
arguments. This method returns true if the authentication operation is successful; otherwise, it returns 
false.

Example 2.3 Performing an authentication operation

private boolean checkValues(
String userid,
String password,
String domain,
String filename) {
BufferedReader br = null;
try {

//create a BufferedReader object
br = new BufferedReader(new FileReader(filename));
String line = null;

//Read each line in the file and search for the values
while ((line = br.readLine()) != null) {

String[] parts = line.split("\t");
if (userid.equals(parts[1]) && domain.equals(parts[0]) && 

password.equals(parts[2]))
return true;

}
} catch (IOException e) {

System.err.println(e);
} finally {

if (br != null) {
try {

br.close();
} catch (IOException e) {}

}
}
return false;
}

The file name was retrieved from the configuration settings that were passed by User Management. For 
information, see “Retrieving configuration information” on page 11.

The user name and password values were retrieved from the java.util.Map object that was passed to 
the authenticate method. For information, see “Retrieving authentication values” on page 10.

Column Description Example

0 The domain of the user MyDomain2

1 The login identifier of the user s_user10

2 The password of the user password10



Adobe User Management Creating Custom Authentication Providers
Developing User Management Service Providers  Sending authentication results to User Management     14

Sending authentication results to User Management
After the authentication provider performs the authentication, it must return the results to User 
Management. The authentication provider must specify the user name, the domain name, and whether 
the authentication was successful.

The User Management SPI provides the AuthResponseImpl class, which implements the 
AuthResponse interface. You create an AuthResponse object and populate it with the appropriate 
information. The following code fragment creates an AuthResponse object:

AuthResponse response = new AuthResponseImpl();

You can inform User Management that the authentication was successful by invoking the AuthResponse 
object’s setAuthStatus method and passing AuthResponse.AUTH_SUCCESS. You can also inform 
User Management that the authentication was unsuccessful by invoking the AuthResponse object’s 
setAuthStatus method and passing AuthResponse.AUTH_FAILED.

Use the return statement in the authenticate method to send the AuthResponse object to User 
Management. For information about the authenticate method, see “About custom authentication 
providers” on page 8.

The following example populates an AuthResponse object after a user is successfully authenticated.

Example 2.4 Returning authentication results in an AuthResponseImpl object

//create the AuthResponse object
AuthResponse response = new AuthResponseImpl();
response.setAuthStatus(AuthResponse.AUTH_SUCCESS);
response.setUsername(userName);
response.setDomain(conf.getDomain());
return response; 

Trapping errors

The AuthProvider interface does not throw exceptions, but errors should be included in authentication 
results. Your authentication provider should collect exceptions and add them to the AuthResponse 
object by using the setExceptions method. You can also provide an error description by using the 
setErrorMessage method.



     15

3 Creating Custom Directory Service Providers

This chapter explains how to use the User Management SPI to develop custom directory service providers 
that you may integrate with User Management. 

User Management is packaged with a directory service provider that supports connections to LDAP 
directories. If your organization uses a non-LDAP repository to store user records, you can create your own 
directory service provider that works with your repository. 

Directory service providers retrieve records from a user store at the request of User Management. User 
Management regularly caches user and group records in the database to improve performance.

To implement a custom directory service provider, create a user provider and a group provider:

● User providers retrieve all required user records from the repository.

● Group providers retrieve all required user and group records within a specified group, and retrieve all 
required group records in the repository.

This chapter contains the following information. 

Sample directory service provider
User Management provides a sample implementation of the DirectoryPrincipalProvider, 
DirectoryGroupProvider, and DirectoryUserProvider interfaces. The sample demonstrates how directory 
service providers may interact with User Management. You can retrieve the User Management sample 
from the Adobe LiveCycle Developer Center website at 
http://partners.adobe.com/public/developer/livecycle/index_samples.html.

Tip: You may find it useful to print the sample code and reference it as you read this chapter.

Topic Description See

Sample directory service 
provider

Provides information on sample implementations of the 
directory service provider interfaces

page 15

Directory service provider 
interface

Describes the directory service provider interfaces to be 
implemented

page 16

Implementing the directory 
service provider interfaces

Explains how to develop custom directory service 
provider interfaces

page 16

Connecting to the directory Describes how to retrieve directory configuration 
information and test the connection to User Management

page 23

Configuring User Management 
to use custom providers

Describes the steps required to update the XML-based 
configuration file to enable the usage of your custom 
providers within User Management

page 25

http://partners.adobe.com/public/developer/livecycle/index_samples.html


Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  Directory service provider interfaces     16

Directory service provider interfaces
You must implement the following three interfaces when using a custom repository to store user and 
group information. 

All three interfaces require the implementation of a getPrincipals method and a 
testConfiguration method. In all three cases, the entry point for user services is the getPrincipals 
method.

Note: User Management calls the getPrincipals method only for the implementations of the 
DirectoryUserProvider and DirectoryGroupProvider interfaces.

Implementing the directory service provider interfaces
To retrieve user and group records, you must implement the DirectoryUserProvider and 
DirectoryGroupProvider interfaces described in “Directory service provider interfaces” on page 16, 
and configure User Management for your custom repository by modifying the configuration file as 
described in “Configuring User Management for custom directory service providers” on page 25. 

In this section, implementation guidelines are provided for the interfaces and are based on these samples 
provided in the User Management installation: FBDirectoryPrincipalProviderImpl.java, 
FBDirectoryUserProviderImpl.java, and FBDirectoryGroupProviderImpl.java. 

Note: For information about the location of these samples, see “Sample directory service provider” on 
page 15. 

Interface Purpose

DirectoryPrincipalProvider The base interface for the user provider 
(DirectoryUserProvider) and group provider 
(DirectoryGroupProvider) interfaces. Declares methods for 
retrieving user and group records and for testing the 
configuration settings and constants for reporting exceptions to 
User Management.

DirectoryUserProvider The user provider interface. You must implement the methods 
and exceptions needed for implementing a custom user 
provider that retrieves user records and for testing the 
configuration settings. User Management requires an 
implementation of this interface to synchronize its database with 
the user store.

DirectoryGroupProvider The group provider interface. You must implement the methods 
and exceptions needed for implementing a custom group 
provider that retrieves user records that belong to a specific 
group in the repository and for testing the configuration 
settings. User Management requires an implementation of this 
interface when any action is performed on a group, such as 
adding a group to a policy.



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryPrincipalProvider interface     17

DirectoryPrincipalProvider interface
The DirectoryPrincipalProvider interface is the base interface for DirectoryUserProvider 
and DirectoryGroupProvider. This interface requires that you implement methods that provide the 
entry point for user services (getPrincipals) and a test of the configuration for User Management 
(testConfiguration).

The getPrincipals method receives two parameters:

● config—A DirectoryProviderConfig object that contains information about the user records 
to be retrieved and User Management configuration information. 

● state—An implementor-defined object that indicates whether this is the first time the method has 
been called or the state of the previous call. This object typically contains fields originating from the 
User Management configuration settings; however, it can also be used to store any information 
required between getPrincipals calls.

The getPrincipals method is repeatedly called by User Management until all records (both user and 
group) are retrieved. The record collection is returned within a DSPrincipalCollection object, which 
also contains the state information to be used in the next call. 

The following example shows the getPrincipals method, which is the entry point for user services. 

Example 3.1 Entry point for user services

public DSPrincipalCollection getPrincipals(
DirectoryProviderConfig config, 
Object state) throws IDPException {

return grabBatchPrincipals(config,state);
}

In the example, processing is handled in the grabBatchPrincipals method. A description of the 
method’s algorithm follows. 

Declare an object of the DSPrincipalCollection class, which will store the user or group records to 
be retrieved from the custom repository. This object will be returned when the getPrincipals method 
terminates and will contain both the records and the state information used in the next call. 

The state information should include the following data: 

● Principal type

● Batch size

● Principal’s file handle

● Configuration information

● Domain

The following example shows implementor-defined classes used to represent the state information. 

Example 3.2 Representing the state information

protected class FBConfig {
private String principalType;
private int batchSize;
private String principalsFileName;



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryPrincipalProvider interface     18

private Map customConfig;
private String domain;
private static final String RECORD_USER = "USER";
private static final String RECORD_GROUP = "GROUP";

public int getBatchSize() {
return batchSize;

}
public Map getCustomConfig() {

return customConfig;
}
public String getDomain() {

return domain;
}
public String getPrincipalsFileName() {

return principalsFileName;
}
public String getPrincipalType() {

return principalType;
}
public void setBatchSize(int batchSize) {

this.batchSize = batchSize;
}
public void setCustomConfig(Map customConfig) {

this.customConfig = customConfig;
}
public void setDomain(String domain) {

this.domain = domain;
}
public void setPrincipalsFileName(String principalsFileName) {

this.principalsFileName = principalsFileName;
}
public void setPrincipalType(String principalType) {

this.principalType = principalType;
}

}
protected class FBPrincipalState{

public FBConfig config;
public File principalsFile;
public BufferedReader brPrincipals;

public void finalize() {
try {

brPrincipals.close();
} catch (Exception e) {

System.err.println(e);
}

}
}

If this is the first time the getPrincipals method is called (state parameter is null), perform the 
initializations required to begin collecting the information. Otherwise, copy the state into the 
DSPrincipalCollection object to propagate it to the next call. 



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryPrincipalProvider interface     19

In the following example, dpc is the DirectoryProviderConfig object, which is used to read the 
configuration preferences. The implementor-defined prepEnumeration method gathers the state 
information.

Example 3.3 Determining the state

FBPrincipalState fbState = null;
if (state == null)

fbState = prepEnumeration(dpc);
else if (state instanceof FBPrincipalState)

fbState= (FBPrincipalState) state;
else {

// throw exception
}

ret.setState(fbState); //carry state forward

Collect the records, which are objects of the DSPrincipalRecord class. If there are no objects to collect, 
null is returned. It is recommended that implementations try to return fewer than 1000 records at a time 
for optimal performance. 

After you obtain a new record, add it to the collection. In the following example, this task is done by 
invoking the DSPrincipalCollection object’s addDSPrincipalRecord method.

Example 3.4 Collecting records

int batchcount = 0;
int maxbatch = fbState.config.getBatchSize();
String line = null;
while (batchcount < maxbatch && 

(line = fbState.brPrincipals.readLine())!=null) {
++batchcount;
DSPrincipalRecord rec = grabPrincipal(fbState, line); 
ret.addDSPrincipalRecord(rec);

}

if (batchcount == 0 && line == null)
return null;

For each record, set the principal type (user or group) according to the configuration information. It is 
recommended that you consider the option of setting the organization name of the principal. 

For all principals, you must set the following information:

● Domain name

● Canonical name

● Primary email address

● Full name

For users, you must set the User identification. For groups, you must set the type of group record.



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryPrincipalProvider interface     20

In the following example, the grabPrincipal method performs these tasks. Each setting is used and is 
labeled as either required or optional within the example.

Example 3.5 Setting the principal information

private DSPrincipalRecord grabPrincipal(
FBPrincipalState state,
String line) {

//Create a DSPrincipalRecordImpl object
DSPrincipalRecord rec = new DSPrincipalRecord();

rec.setPrincipalType(state.config.getPrincipalType());
String[] parts = line.split("\t");

// These settings apply to all principals:
rec.setDomainName(parts[0]); // REQUIRED
rec.setCanonicalName(parts[1]); // REQUIRED
rec.setDescription(parts[2]); // OPTIONAL
rec.setEmail(parts[3]); // REQUIRED
rec.setCommonName(parts[4]); // REQUIRED
rec.setOrg(parts[5]); // OPTIONAL

//These settings apply only to users:
if (state.config.getPrincipalType().equals(FBConfig.RECORD_USER)) {

rec.setUserid(parts[6]); // REQUIRED
//password is parts[7] (useful only for authentication providers)
rec.setFamilyName(parts[8]); // OPTIONAL
rec.setGivenName(parts[9]); // OPTIONAL
rec.setInitials(parts[10]); // OPTIONAL
rec.setTelephoneNumber(parts[11]); // OPTIONAL
rec.setPostalAddress(parts[12]); // OPTIONAL
rec.setLocale(parts[13]); // OPTIONAL
rec.setTimezone(parts[14]); // OPTIONAL

}

// These settings apply only to groups:
if (state.config.getPrincipalType().equals(FBConfig.RECORD_GROUP)) {

rec.setGroupType(DSPrincipalRecord.GROUPTYPE_PRINCIPALS); 
}

return rec;
}

The implementation of the DirectoryUserProvider interface has the same required methods as the 
DirectoryPrincipalProvider interface. 

You may optionally extend the methods defined in the base class. The example reuses the base class 
method implementations. 



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryUserProvider interface     21

DirectoryUserProvider interface
The DirectoryUserProvider interface inherits from the DirectoryPrincipalProvider interface 
and must be implemented for your custom user provider service. 

You may optionally override the methods defined in the base class, as shown in the following example.

Example 3.6 Implementing the DirectoryUserProvider interface

public class FBDirectoryUserProviderImpl
extends FBDirectoryPrincipalProviderImpl
implements DirectoryUserProvider {

public FBDirectoryUserProviderImpl() {
super();

}
}

DirectoryGroupProvider interface
The DirectoryGroupProvider interface inherits from the DirectoryPrincipalProvider 
interface. You may optionally override the methods defined in the base class, but you must also 
implement one more method—the getGroupMembers method.

The getGroupMembers method accepts two parameters: 

● A DirectoryProviderConfig object containing information used to connect to the repository

● A DSPrincipalIdRecord object that identifies the group to be retrieved

The method returns a DSGroupContainmentRecord object, which is a container for the user and group 
records belonging to a group.

The getGroupMembers method depends on an implementor-defined object that contains the state 
information as described in “Determining the state” on page 19, as well as the group containment file 
name. An implementation is shown in the following example.

Example 3.7 Group state information

private class FBGroupConfig {
private FBConfig commonConfig;
private String groupContainmentFileName;
public FBConfig getCommonConfig() {

return commonConfig;
}

public String getGroupContainmentFileName() {
return groupContainmentFileName;

}

public void setCommonConfig(FBConfig config) {
commonConfig = config;

}



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  DirectoryGroupProvider interface     22

public void setGroupContainmentFileName(String string) {
groupContainmentFileName = string;

}
}

private FBGroupConfig createFBGroupConfig(DirectoryProviderConfig dpc){
FBGroupConfig ret = new FBGroupConfig();
ret.setCommonConfig(createFBConfig(dpc));

ret.setGroupContainmentFileName(
(String)ret.getCommonConfig().getCustomConfig().get(

"GROUPCONTAINMENT_FILE_NAME"
)

);
return ret;

}

To retrieve the user records, implement the getGroupMembers method by performing these tasks:

1. Use the User Management configuration information stored in the DirectoryProviderConfig 
object (in this case by invoking the createFBGroupConfig method).

2. Set up a DSGroupContainmentRecord object.

3. Read in the user records and collect each one (in this case, it is accomplished by calling a method 
named grabContainment). Only those user or group records that belong to the group should be 
collected. It is also possible to collect nested groups. To do so, compare the group name contained in 
each record with the group name of the principal. When a group is found, store its domain and group 
name.

4. Collect all the principals belonging to that group.

Example 3.8 Retrieving group members

public DSGroupContainmentRecord getGroupMembers(
DirectoryProviderConfig dpc, 
DSPrincipalIdRecord group

) throws IDPException {
// Check to make sure the group domain is known:
if (group == null) {
// throw IDPException

}

FBGroupConfig config = createFBGroupConfig(dpc);
DSGroupContainmentRecord ret = null;
String groupName = group.getCanonicalName();

// open file and search for this groupname.
try {

BufferedReader brContainment = new BufferedReader(
new FileReader(config.getGroupContainmentFileName())

);



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  Connecting to the directory     23

String line = null;
while ((line = brContainment.readLine()) != null) {

ret = grabContainment(config, groupName, line);

if (ret != null) 
  break;

}
brContainment.close();

} catch (Exception e) {
// throw IDPException

}
return ret;

}

private DSGroupContainmentRecord grabContainment(
FBGroupConfig config,
String groupName,
String line

) {
String[] parts = line.split("\t");
if (! parts[0].equals(groupName))

return null;

String domain = config.getCommonConfig().getDomain();

DSGroupContainmentRecord ret = new DSGroupContainmentRecord();
ret.setDomainName(domain);
ret.setCanonicalName(groupName);

for (int i=1;i<parts.length;i++) {
DSPrincipalIdRecord memprin = new DSPrincipalIdRecord();
memprin.setDomainName(domain);
memprin.setCanonicalName(parts[i]);
ret.addPrincipalMember(memprin);

}

return ret;
}

Connecting to the directory
This section provides information on how to retrieve directory properties from the directory service 
provider configuration.



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  Getting the directory properties     24

Getting the directory properties
The directory service provider interface implementations all rely on the directory service provider 
configuration. To obtain this information, use the DirectoryProviderConfig object, which provides 
these methods:

● getDomain—Retrieves the domain name

● getGroupConfig—Retrieves the group provider configuration information by returning an instance 
of a class that implements the GroupConfigBO interface (see GroupConfigBO interface)

● getUserConfig—Retrieves the user provider configuration information by returning an instance of a 
class that implements the UserConfigBO interface (see UserConfigBO interface)

Note: The getGroupConfig method and getUserConfig method both return implementations of 
interfaces that define a getCustomConfiguration method, which makes it possible to access 
the configuration settings within a java.util.Map object that contain key-value pairs of strings 
that represent the first-level configuration settings. These strings may be parsed as needed. 

See “Implementing the directory service provider interfaces” on page 16 for examples of the 
DirectoryProviderConfig object’s usage.

GroupConfigBO interface

Classes implementing the GroupConfigBO interface store configuration information about the group 
provider. This information is obtained from the XML-based User Management configuration file (see 
“Configuring User Management for custom directory service providers” on page 25.) 

For your convenience, the User Management SPI provides a generic implementation called 
GenericGroupConfigBO.

UserConfigBO interface

Classes that implement the UserConfigBO interface store configuration information about the user 
provider. This information is obtained from the XML-based User Management configuration file (see 
“Configuring User Management for custom directory service providers” on page 25.)

For your convenience, the User Management SPI provides a generic implementation called 
GenericUserConfigBO. 

Testing the connection
This section describes how you can test the connection to the directory.

➤ To test the connection to the directory: 

1. Log into the Adobe LiveCycle Administration Console and click Settings > User Management > 
Domain Management.

2. Under Synchronize All Directories Manually, click OK.

Note: This test will not call your testConfiguration method; it calls the getPrincipals method.



Adobe User Management Creating Custom Directory Service Providers
Developing User Management Service Providers  Configuring User Management for custom directory service providers     25

Configuring User Management for custom directory service 
providers

When configuring User Management for custom directory service providers, you must also modify its 
configuration file. 

➤ To configure User Management for custom directory service providers:

1. Log into the Adobe LiveCycle Administration Console and click Settings > User Management > 
Configuration > Import and export configuration files.

2. Click Export and, in the File Download dialog box, click Open. The config.xml file is downloaded.

3. Edit the config.xml file according to the directions provided in “Configuring User Management to use 
directory service providers” on page 33.

4. Click Browse and then click Import. The config.xml file is uploaded to User Management. 



     26

4 Registering Custom Service Providers

You must register custom service providers with User Management after you have developed them using 
the User Management SPI. 

Most of the custom service providers that you can develop for User Management require you to configure 
User Management appropriately. For example, User Management requires some service providers to be 
associated with a domain. You will need to create a new User Management domain that includes settings 
for your custom service providers. This is because you cannot edit domains from the user interface that 
contain custom service providers. Otherwise, you will be unable to use the user interface to modify the 
LDAP settings in that domain.

This chapter contains the following information.

User Management configuration settings
User Management configuration settings include information about the service providers that User 
Management employ. 

User Management can export the configuration settings to a file on your local file system. The settings are 
expressed in XML format. XML elements represent the different product components and their 
configuration settings. 

Initially, XML includes settings only for the service providers packaged with User Management. You need 
to add settings for your custom service providers.

To retrieve the XML file (config.xml), log into the User Management web pages by using an administrator 
account and export the User Management configuration. After you edit the file, import it to apply the 
changes.

Topic Description See

User Management configuration 
settings

Describes how User Management configuration 
settings are implemented and explains the 
structure of the configuration file

page 26

Defining domains for custom 
service providers

Describes the settings you need to configure to 
create a new User Management domain

page 28

Configuring User Management to 
use custom authentication providers

Describes the settings you need to configure to 
integrate your custom authentication service 
provider with User Management

page 29

Configuring User Management to 
use directory service providers

Describes the settings you need to configure to 
integrate your custom directory service provider 
with User Management

page 33



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  XML configuration file     27

For more information about exporting and importing configuration settings, see the User Management 
Help.

Caution: When you are editing the config.xml file, change only the configuration settings that affect your 
custom service providers. When you import the file, User Management applies all the settings 
that the file defines.

XML configuration file
The configuration file that User Management exports is structured so that each configurable aspect of the 
product is represented by a different XML element. 

The following code shows the top levels of the config.xml file. The lowest level shown includes elements 
that represent the configurable components. 

Example 4.1 XML configuration file

The AuthProviders, Domains, GroupProviders, and UserProviders elements apply to custom 
service providers. For example, the node element that has the name attribute value of Domains contains 
an XML element for each User Management domain.



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  XML element types in the configuration file     28

XML element types in the configuration file
In general, the configuration file uses three element types to structure the configuration information:

● node elements represent configurable components in the environment. For example, a node element 
exists for each authentication provider that User Management uses. node elements each have a name 
attribute and contain other node elements, and must include at least one map element. 

● map elements contain the elements that hold the property-value pairs that constitute configuration 
settings. The configuration settings are associated with the map element’s parent node element. 
map elements can contain entry elements.

● entry elements use attributes to specify property-value pairs. entry elements have no content, but 
they have the attributes key and value that represent property names and values, respectively. An 
entry element can define only one property-value pair.

Defining domains for custom service providers
Domains define different user bases. The boundary of a domain is usually defined according to the way 
your organization is structured or how your user store is set up. 

User Management domains provide configuration settings that authentication providers and directory 
service providers use. 

In the configuration XML that User Management exports, the root node that has the name attribute value 
of Domains contains an XML element for each domain defined for User Management. Each of these 
elements contain other elements that define aspects of the domain associated with specific service 
providers.

It is strongly recommended that you define a new domain that provides configuration settings for your 
custom service providers. For example, if you are implementing a custom authentication provider and a 
custom directory service provider that connect to the same user store, you should create a new domain.

The following example shows the structure of the XML element that represents a domain in the User 
Management configuration settings (the attribute values in italics are the values you can customize). Your 
domains should never be local (see the map entry whose key is isLocal).

Example 4.2 Defining a domain

<node name="your_domain_name">
<map>

<entry key="name" value="your_domain_name"/>
<entry key="description" value="a_description_for_your_domain"/>
<entry key="isLocal" value="false"/>

</map>
<node name="AuthConfigs"> ... </node>
<node name="DirectoryConfigs"> ... </node>

</node>

To create a new domain, insert similar XML tags into the exported configuration file. Place the tags within 
the node element that has the name attribute value of Domains. 

Note: The node element that has the name attribute value of AuthConfigs contains configuration 
information that authentication providers need. The node element that has the name attribute 
value of DirectoryConfigs contains configuration information that directory providers need. 



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Configuring User Management to use custom authentication providers     29

Configuring User Management to use custom authentication 
providers

User Management configuration settings are used to register authentication providers, specify domains 
used for authentication, and associate authentication providers with domains. 

You can also include domain information that your authentication provider requires at run time, such as 
parameters for connecting to the user store.

For information about User Management configuration settings, see “User Management configuration 
settings” on page 26.

Identifying authentication providers
The User Management configuration settings must identify each authentication provider that User 
Management uses.

Each authentication provider is identified by a corresponding element in the User Management XML 
configuration file. It is necessary to add an element to the first-level AuthProviders node that indicates 
which authentication providers should be globally loaded. These providers are associated with the 
specific domains listed in each of the child nodes.

Each domain element includes a node element that has the name attribute of the AuthProviders node. 
The AuthProviders node contains a separate node element that describes each authentication 
provider.

These nodes include elements that specify all the information that User Management requires to use the 
authentication provider, such as the name of the class that User Management should use to initiate the 
authentication provider and a pointer to the domain settings associated with the authentication provider.

The following example shows an XML node element within AuthProviders, arbitrarily named SPIFB in 
this case, that corresponds to an authentication provider. As shown by the highlighted portions, several 
relationships apply within both the AuthProviders node and the Domains node: 

● The path specified in the AuthProviders node’s entry named configInstance contains 
SPIDom, which is arbitrarily named and corresponds to an identically named node specified within 
Domains. It also corresponds to part of the path specified in the AuthProviders node’s entry 
named configInstance.

● The AuthProviders node’s SPIFB element corresponds to both the last part of the path specified in 
its entry named configInstance and an identically named node within the SPIDom node 
specified within Domains.

● The SPIDom node specified within Domains must be identical to the value used in its map node’s 
name entry.

Because these relationships apply, be careful when renaming nodes to update the corresponding nodes.



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Identifying authentication providers     30

Example 4.3 Identifying an authentication provider

Therefore, to identify an authentication provider, insert similar tags into the exported configuration file. 
Place the tags within the node element that has the name attribute value of AuthProviders, and be 
aware of related names used in Domains.

Specify a name for the authentication provider in the node element you insert. The name must be unique 
to all authentication providers in the context of the configuration settings.

The following table describes the attribute values you need to provide for the entry elements inside the 
first map element.

Key name Value

enabled true or false

Specifies whether User Management should use this provider. User 
Management uses this provider if value is true.

configured true or false

Specifies whether the domain has been configured for this 
authentication provider. If the domain has been configured, value 
should be true.



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Configuring domains for authentication providers     31

Configuring domains for authentication providers
The configuration settings for User Management domains include information to support each associated 
authentication provider. You must add configuration settings to the domain with which your 
authentication service provider is associated.

If you have not already set up a domain, you need to set one up immediately. For more information, see 
“Defining domains for custom service providers” on page 28.

The following example shows a node that provides the domain configuration for an authentication 
provider and provides a reference from inside your domain up to the authentication provider entry. For a 
more complete example, see “Configuring User Management to use directory service providers” on 
page 33.

Example 4.4 Configuring a domain for an authentication provider

<node name="your_authentication_provider">
<map>

<entry key="authProviderNode" 
value="/Adobe/LiveCycle/Config/UM/AuthProviders/name"/>
<entry key="additional_key_name" value="corresponding_value"/>

</map>
</node>

visibleInUI true or false

Specifies whether this authentication provider should appear as a 
selectable option in the User Management web pages. For your 
authentication provider, value should be false.

allowMultipleConfigs true or false

Specifies whether more than one domain configuration instance exists 
for this authentication provider. If multiple configuration instances exist, 
value should be true.

order Any integer, beginning at 1. This integer is reserved for future use.

classname The fully qualified name of the class used to initiate this authentication 
provider.

User Management calls the authenticate method of this class to 
request authentication.

configInstance The value of the name attribute of the node element that contains the 
domain configurations for this authentication provider.

You must provide cross-references to all the domains that use this 
authentication provider. This enables you to indicate which domain to 
use for this authentication provider. 

Each node element inside AuthConfigs represents a configuration 
instance. 

Key name Value



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Configuring domains for authentication providers     32

To configure your domain, you must add a similar XML tag in the exported configuration file. Place the tag 
in the node element that has the name attribute value of AuthConfigs. This AuthConfigs node is in 
the domain that the authentication provider uses, as shown in “Defining a domain” on page 28. 

The node element for your authentication provider can include any number of properties that the 
provider requires. The node element must include entry elements that contain the two property-value 
pairs described in the following table.

Note: Ensure that your domain for custom providers is uniquely named. Assume that the name will be 
treated in a case-insensitive manner.

In the following example, the two property-value pairs are authProviderNode and FILENAME. The 
FILENAME entry is an arbitrary example of a key that you may specify.

Example 4.5 Configuring a domain

Note: Do not add children nodes; only first-level keys can be used.

Key name Value

authProviderNode The path to the node in the XML configuration file that represents your 
authentication provider.

additional_key_name Any additional information that the authentication service provider 
needs at run time. Use this key name to create as many custom keys as 
you need to store the configuration information for your 
authentication provider to connect to the authentication system.



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Configuring User Management to use directory service providers     33

Configuring User Management to use directory service providers
After you download the XML file, edit the file according to the following example. Look for a node named 
Domains and add the DirectoryConfigs subnode after </map>, as shown in the example that 
follows.

Note: The highlighted entries must match corresponding nodes within the GroupProviders and 
UserProviders nodes, which are discussed in “Configuring the custom group provider” on 
page 34 and “Configuring the custom user provider” on page 34.

Example 4.6 Configuring the domain to use custom directory service providers

Note: The names of the nodes within DirectoryConfigs may be arbitrarily chosen. Therefore, 
sdkspi_DirectoryConfig01, NameDoesntMatterGroupConfig, and 
NameDoesntMatterUSerConfig are arbitrary names. The only requirement is that the names 
within the same node depth must be distinct. In addition, the GROUPCONTAINMENT_FILE_NAME 
and PRINCIPAL_FILE_NAME entries are arbitrary examples of keys you may specify. In such cases, 
do not add children nodes; only first-level keys may be used.



Adobe User Management Registering Custom Service Providers
Developing User Management Service Providers  Configuring User Management to use directory service providers     34

To configure your custom group provider, specify the name of the class that implements the 
DirectoryGroupProvider interface. In the following example, this class is 
FBDirectoryGroupProviderImpl. Look for a node named GroupProviders and add the following 
subnode after </map>. In this case, it has been arbitrarily named GroupSPIFB. You may give it a name 
you prefer, but it must match the name in the path that is provided in the groupProviderNode entry 
within the Domains node, as shown by the yellow highlighted text in Configuring the domain to use 
custom directory service providers and in the following example.

Example 4.7 Configuring the custom group provider

To configure your custom user provider, specify the name of the class that implements the 
DirectoryUserProvider interface. In the following example, this class is 
FBDirectoryUserProviderImpl. Look for a node named UserProviders and add the following 
subnode after </map>. In this case, it has been arbitrarily named UserSPIFB. You may give it a name you 
prefer, but it must match the name in the path that is provided in the userProviderNode entry within 
the Domains node, as shown by the blue highlighted text in Configuring the domain to use custom 
directory service providers and in the following example.

Example 4.8 Configuring the custom user provider



     35

5 Deploying Custom Service Providers

This chapter describes how to deploy a custom service provider to the J2EE application server on which 
User Management is deployed. You must perform the tasks described in this chapter in order for User 
Management to use the custom service provider that is created by using the User Management SPI.

To deploy your custom service provider, package it into a JAR file. After you create the JAR file, you must 
place the file into the LiveCycle.ear file by running Adobe Configuration Manager. After you run 
Configuration Manager, the custom service provider is deployed and User Management can use it to 
authenticate users.

This chapter provides the following information.

Packaging your custom service provider
After you finish developing a custom service provider, package your Java project into a JAR file. Include all 
CLASS files that are located in your Java application in the JAR file. For information on creating a JAR file, 
go to http://java.sun.com/.

If your custom service provider is dependent on external JAR files, you must package these JAR files along 
with your custom service provider. 

Repackaging the LiveCycle EAR file
You must repackage the LiveCycle.ear file to include the JAR file(s) that contain your custom service 
provider and external JAR files that your custom service provider is dependent on. To repackage the 
LiveCycle.ear file, you run Configuration Manager, which is a wizard-like tool that automates the product 
configuration and assembly process. For more information about Configuration Manager see the Installing 
and Configuring guide that accompanies your LiveCycle product.

Before you run Configuration Manager, you must place your JAR file in the following directory:

C:\Adobe\LiveCycle\components\um\<app_server>\ext

where C:\ is the drive on which User Management is installed and app_server is the J2EE application on 
which User Management is deployed. Assume that User Management is deployed on JBoss. In this 
situation, place your JAR file in the following directory:

C:\Adobe\LiveCycle\components\um\jboss\ext

Note: After you place the JAR in the appropriate directory, you can run Configuration Manager. It is 
recommended that you configure your LiveCycle product the same as you did when you originally 
installed it by selecting the same options that you selected when you first ran Configuration 
Manager. 

Topic Description See

Packaging your custom service 
provider

Explains packaging your Java application into a JAR file page 35

Repackaging the LiveCycle 
EAR file

Explains how to use Configuration Manager to repackage 
the LiveCycle.ear file to include the JAR file

page 35

http://java.sun.com/


Adobe User Management Deploying Custom Service Providers
Developing User Management Service Providers  Deploying custom service providers     36

Deploying custom service providers
If User Management is deployed on JBoss, you must update the application.xml file to include the name of 
the JAR file(s) that make up your custom service provider. Configuration Manager merges the changes 
that you make to the application.xml file to the application.xml file that is located in the repackaged 
LiveCycle.ear file.

If User Management is deployed on IBM® WebSphere or BEA Weblogic, you must also perform an 
additional step. You must open the um.jar file and modify the manifest file to include references that 
specify all the JAR files that you placed in the LiveCycle.ear file. This step is not necessary if User 
Management is deployed on JBoss.

➤ To deploy a custom service provider on JBoss:

1. Copy the custom JAR file(s) to the C:\Adobe\LiveCycle\components\um\jboss\ext directory. 

2. Update the application.xml file. 

3. Run Configuration Manager to repackage the LiveCycle.ear file. For information, see To repackage the 
LiveCycle.ear file by running Configuration Manager:.

➤ To deploy a custom service provider on WebSphere:

1. Copy custom JAR file(s) to the C:\Adobe\LiveCycle\components\um\websphere\ext directory.

2. Open the C:\Adobe\LiveCycle\components\um\websphere\ejb\um.jar file and edit the manifest to 
include the custom JAR file(s) in the Class-Path: entry.

3. Run Configuration Manager to repackage the LiveCycle.ear file. For information, see To repackage the 
LiveCycle.ear file by running Configuration Manager:.

➤ To deploy a custom service provider on Weblogic:

1. Copy custom JAR file(s) to the C:\Adobe\LiveCycle\components\um\weblogic\ext directory.

2. Open the C:\Adobe\LiveCycle\components\um\weblogic\ejb\um.jar file and edit the manifest to 
include the custom JAR file(s) in the Class-Path: entry.

3. Run Configuration Manager to repackage the LiveCycle.ear file. For information, see To repackage the 
LiveCycle.ear file by running Configuration Manager:.

➤ To repackage the LiveCycle.ear file by running Configuration Manager:

1. Navigate to the LiveCycle root/ConfigurationManager directory and start Configuration Manager:

● (Microsoft® Windows®) Double-click ConfigurationManager.exe.

● (Linux®) Run the configurationmanager.sh file. 

2. On the Configuration Manager Welcome screen, click Next. 

3. Select Manual Configuration, select one of the options below it, and then click Next.

4. Select the product(s) you want to configure and click Next.

For information about configuring your LiveCycle product, see the Installing and Configuring guide that 
accompanies your LiveCycle product.

5. Choose the application server that you are deploying to and click Next:

● WebSphere (supported on Linux)

● JBoss (supported on Windows)



Adobe User Management Deploying Custom Service Providers
Developing User Management Service Providers  Deploying custom service providers     37

6. On the Application Deployment Configuration screen, accept the following default information for the 
application that is being assembled, or type custom descriptions: 

File name: The default is LiveCycle.ear, or type another name for the final EAR file that you deploy. 

Application context: The default is LiveCycle, or use a descriptive name of your choice. 

Application description: The default is LiveCycle, or use a brief description of the application.

7. Select User Management in the product assembly. (You must select User Management because you 
are repackaging the LiveCycle.ear file with a JAR that contains a custom service provider for User 
Management.)

Note: This configuration dialog box appears only if LiveCycle Forms is selected. 

8. On the Data Manager Module Configuration screen, select Enable SSL if you are using SSL security on 
your application server. 

9. Type the SSL credential password. (If you have not yet set up your SSL credential, you can type a 
password here and use it when you create an SSL credential.)

10. (Optional) Enter a directory to use for Adobe LiveCycle products temp file. 

11. Click Next and, on the Data Manager Module Configuration Continued screen, accept the default 
values for the following properties or type new values:

● localDocumentStorageSweepInterval

● globalDocumentStorageSweepInterval

● defaultDocumentMaxInlineSize

● globalDocumentStorageRootDir

● defaultDocumentDisposalTimeout

12. (Optional) Select globalDocumentStorageForceNFS to set this property to true. 

13. Click Next and, on the Font Manager Module Configuration screen, click Next. 

The Configuration and Assembly Progress screen displays the progress of the configuration process. 
The Configuration and Assembly Details screen displays information about the product configuration 
and assembly.

14. Click Next, and then click Finish to exit Configuration Manager.

The deployable files are located in the following directory:

● (Windows) LiveCycle root\ConfigurationManager\export

● (Linux) LiveCycle root/livecycle/ConfigurationManager/export

15. Redeploy the LiveCycle.ear file to the J2EE application server that is hosting your LiveCycle product. For 
information, see the Installing and Configuring guide that accompanies your LiveCycle product. 

16. Restart your J2EE application server.

Note: If you originally used the JBoss turnkey option, you can use it again to repackage the LiveCycle.ear 
file. For information, see the chapter that discusses how to install your LiveCycle product by using 
the turnkey in the product’s Installing and Configuring guide. 



     38

Index

A
adding

exceptions to authentication response  14
user and group records to collection  19

Adobe Configuration Manager  35
AuthConfigBO interface  10
AuthConfigBO objects  11
authenticate method  8
authentication

performing operations  12
process  6, 9
result errors  14
retrieving configuration information  11
retrieving values  10
sending results to User Management  14

authentication providers
configuring domains for  31
configuring User Management to use  29
creating  8
identifying  29

AuthProvider interface  10
AuthResponse interface  10
AuthResponse object, creating  14
AuthResponseImpl class  10
AuthScheme interface  10

C
checkValues method  12
collecting user and group records  19
config object  17
ConfigFactory class  10
configuration file

importing and exporting settings  26
modifying  25
structure of  27
XML element types  28

Configuration Manager. See Adobe Configuration Manager
connection, directory, testing  24
creating

authentication providers  8
AuthResponse object  14
directory service providers  15
domains for custom service providers  28
Iterator object  11
JAR files  35
service providers  7

custom authentication providers. See authentication providers
custom service providers. See service providers

D
defining domains  28
deploying custom service providers  36
directory service providers

about  15
configuring User Management for  25
configuring User Management to use  33
implementing interfaces  16
interfaces  16
retrieving directory properties from configuration  23
sample implementation  15

DirectoryGroupProvider interface  16, 21
DirectoryPrincipalProvider interface  17
DirectoryProviderConfig object  17, 21, 24
DirectoryUserProvider interface  16, 21
domains

configuring for authentication providers  31
configuring to use directory service providers  33
defining for custom service providers  28

DSGroupContainmentRecord object  21
DSPrincipalCollection class  17
DSPrincipalIdRecord object  21

E
element types, configuration file  28
entry elements  28

G
get method  10
getCustomConfiguration method  24
getDomain method  24
getGroupConfig method  24
getGroupMembers method  21
getPrincipals method  17
getUserConfig method  24
grabBatchPrincipals method  17
group providers

about  15
configuring  34
retrieving configuration information  24

GroupConfigBO interface  24

I
Iterator object, creating  11

J
JAR file  7, 35
Java API  8
JBoss, deploying custom service providers on  36



Adobe User Management Index
Developing User Management Service Providers       39

L
LDAP directories  15
library files  7
LiveCycle.ear file, repackaging  35

M
map elements  28
methods

authenticate  8
checkValues  12
get  10
getCustomConfiguration  24
getDomain  24
getGroupConfig  24
getGroupMembers  21
getPrincipals  17
getUserConfig  24
grabBatchPrincipals  17
setExceptions  14

N
node elements  28

P
packaging custom service providers  35

R
repackaging LiveCycle.ear file  35
retrieving

authentication values  10
configuration information  11
group members  22
user and group provider configuration information  24
user and group records  16

S
service providers

about deploying  35
about registering  26
creating  7
defining domains for  28
deploying  36
packaging Java project into JAR file  35

setExceptions method  14
setting principal information  20
SPI classes  10
SPI interfaces  10
state object  17

T
tab-delimited file, searching  12
testing directory connection  24

U
um-spi.jar file  7
user providers

about  15
configuring  34
retrieving configuration information  24

UserConfigBO interface  24

W
WebLogic, deploying custom service providers on  36
WebSphere, deploying custom service providers on  36

X
XML configuration file. See configuration file
XML element types, configuration file  28



What’s New

Adobe® LiveCycle™ Forms
Version 7.2

July 2006

bbc

● Platform Support    More ...

● Improved Installation and Configuration Documentation    More ...

● Improved Configuration Manager    More ...



2

Platform Support

Adobe® LiveCycle™ Forms is now supported on a standard set of operating systems, 
application servers, and databases.

For a complete list of the supported application servers, operating systems, and 
databases, see the Installing and Configuring LiveCycle for JBoss, Installing and 
Configuring LiveCycle for WebSphere, or Installing and Configuring LiveCycle for WebLogic 
guide.

Back to top

Improved Installation and Configuration Documentation

To improve the interoperability experience of LiveCycle products, the installation and 
configuration instructions for LiveCycle Forms have been combined with the 
instructions for Adobe LiveCycle Assembler, Adobe LiveCycle Form Manager, Adobe 
LiveCycle PDF Generator, Adobe LiveCycle Print, and Adobe LiveCycle Workflow. 

The installation and configuration guides are specific to each application server:

● Installing and Configuring LiveCycle for JBoss 

● Installing and Configuring LiveCycle for WebSphere 

● Installing and Configuring LiveCycle for WebLogic 

Back to top



3

Improved Configuration Manager

LiveCycle Forms now includes an enhanced Adobe Configuration Manager. Using 
Configuration Manager, you can perform the following tasks:

● Configure and assemble LiveCycle products for deployment

● Configure your IBM® WebSphere® application server or BEA WebLogic Server® for 
LiveCycle products

● Validate application server settings for LiveCycle products

● Automatically deploy LiveCycle products to an application server

● Initialize database schemas for deployed LiveCycle products

● Verify deployed LiveCycle products are available and operational

Back to top

Adobe, the Adobe logo, and LiveCycle are either registered trademarks or trademarks of Adobe Systems 
Incorporated in the United States and/or other countries.

BEA WebLogic Server is a registered trademark of BEA Systems, Inc.

IBM and WebSphere are trademarks of International Business Machines Corporation in the United States, other 
countries, or both.

All other trademarks are the property of their respective owners.


	overview
	Contents
	Preface
	About LiveCycle Forms
	Working environments
	Development environment
	Run-time environment
	End-user environment

	How LiveCycle Forms processes a request

	LiveCycle Forms Integration
	Integrating with other Adobe products
	Process management
	LiveCycle Designer
	LiveCycle Reader Extensions
	LiveCycle Form Manager
	LiveCycle Workflow

	Document security and control
	LiveCycle Document Security
	LiveCycle Policy Server
	Integrating with LiveCycle Forms



	Glossary

	api_reference
	Contents
	Preface
	What’s in this guide?
	Who should read this guide?
	Related documentation

	XML Form Module API
	FormFactory interface
	create
	createDefault

	Form interface
	clearMessages
	getMessages
	exportXDP
	exportXML
	getConfigValue
	getPacketList
	getPageCount
	importPackets
	isPacketPresent
	render
	setConfigValue

	ReturnStatus
	XDP packets
	Configuration options
	Defaults
	Scripting interface
	Configuration options reference
	Configuration options syntax
	data.outputXSL.uri
	data.range
	data.record
	data.startNode
	data.xsl.debug.uri
	data.xsl.uri
	destination
	locale
	pdf.compression.compressLogicalStructure
	pdf.compression.level
	pdf.compression.type
	pdf.encryption.encrypt
	pdf.encryption.encryptionLevel
	pdf.encryption.masterPassword
	pdf.encryption.permissions.accessibleContent
	pdf.encryption.permissions.contentCopy
	pdf.encryption.permissions.documentAssembly
	pdf.encryption.permissions.formFieldFilling
	pdf.encryption.permissions.modifyAnnots
	pdf.encryption.permissions.plaintextMetadata
	pdf.encryption.permissions.print
	pdf.encryption.permissions.printHighQuality
	pdf.encryption.permissions.change
	pdf.encryption.userPassword
	pdf.fontInfo.embed
	pdf.fontInfo.encodingSupport
	pdf.fontInfo.map.equate
	pdf.fontInfo.subsetBelow
	pdf.interactive
	pdf.openAction.destination
	pdf.submitFormat
	pdf.tagged
	pdf.xdc.uri
	temp.uri
	template.base



	Data Manager Module API
	DataManager interface
	createFileDataBuffer
	createFileDataBufferFromUrl
	getTempFileName
	manageTempFile

	DataBuffer interface
	getBufLength
	getBytes
	getContentType
	setContentType

	FileDataBuffer interface
	getFilePath

	DMUtils class
	getDataBuffer
	getDataHandler
	getInputStream


	Connection API
	ConnectionFactory interface
	getConnection


	Index

	developer_guide
	Contents
	List of Examples
	Preface
	Introduction
	LiveCycle Forms APIs
	Form Server Module API
	XML Form Module API
	Data Manager Module API

	About form types
	Interactive forms
	Non-interactive forms
	Dynamic forms
	Server-side dynamic forms
	Client-side dynamic forms

	Static forms
	Rendering different form types

	Planning a LiveCycle Forms client application
	Creating form designs for LiveCycle Forms
	Designing form designs to render as HTML
	HTML pages
	Running scripts
	Event timing
	LiveCycle Designer buttons
	HTML 4.0 web browser
	Maintaining presentation changes
	Caching forms


	LiveCycle Forms processing requests
	Requesting a form
	Using Form Design buttons
	Submit button
	Calculate button



	Invoking LiveCycle Forms
	Including LiveCycle Forms library files
	Invoking the Form Server Module
	Locally invoking Form Server Module
	Remotely invoking Form Server Module
	Invoking Form Server Module using SOAP
	Invoking Form Server Module using the Microsoft .NET client assembly
	Creating Form Server Module objects using the FormServerFactory class
	Creating a SOAPClient object using the FormServerFactory class
	Creating an EJBClient object to locally invoke Form Server Module
	Creating an EJBClient object to remotely invoke Form Server Module


	Invoking the Data Manager Module
	Creating a DataManager object
	Using the DMUtils object
	Working with the Document object
	Creating a Document object using a remote file
	Creating a Document object using a data stream
	Creating a Document object using a local file
	Returning the content of a Document object to a file
	Writing the content of a Document object to a data stream


	Invoking the XML Form service
	Creating a Form object


	Rendering Interactive Forms as PDF
	About rendering PDF forms
	Rendering a form using an EJBClient object
	Specifying the form design to render
	Passing a zero-length byte array
	Setting preference options to render the form as PDF
	Specifying the web context of a client application
	Specifying the target URL
	Specifying the PDF version
	Caching PDF forms
	Caching PDF forms in the client web browser
	Accessing LiveCycle Form Manager application store
	Setting the Standalone option
	Setting XCI run-time options
	Creating application logic to render a form as PDF

	Rendering a Form using a SOAPClient object
	Retrieving submitted form data
	Form design considerations
	Relationship between form fields and XML data
	Creating application logic to retrieve submitted data
	Saving submitted data as XML
	Converting the content type of form data

	Rendering prepopulated forms
	Creating application logic to render a prepopulated form
	Converting an XML document to a byte stream
	Converting an XML string to a byte stream

	Prepopulating a form using a Document object

	Rendering a form at the client
	Passing a form design by value

	Rendering Dynamic Forms
	About dynamic forms
	Form design considerations
	XML data source

	Rendering prepopulated dynamic forms
	Creating an in-memory XML data source
	Converting the XML data source to a byte array
	Rendering a prepopulated dynamic form


	Rendering Forms as HTML
	Client applications rendering HTML forms
	Form considerations

	Rendering a form as HTML
	Setting preference options to render the form as HTML
	Specifying the client applications web context
	Caching HTML forms
	Creating application logic to render a form as HTML


	Calculating Form Data
	About form design scripts
	Handling a form containing a script
	Rendering a form that contains a script
	Creating application logic to handle a form containing a calculation script


	Working with PDF Form Fields
	Importing form data
	Exporting form data
	Flattening form fields

	Transferring PDF Data
	About transferring data
	Form design considerations

	Retrieving submitted PDF data
	Creating a PDF document
	Saving a PDF document

	Authenticating Users
	About user authentication
	Performing user authentication
	Programmatically authenticating a user
	Setting the LiveCycle Forms invocation context
	Creating application logic to authenticate users


	Rendering Forms from .NET
	Client applications rendering PDF forms
	Rendering a form using the Microsoft .NET client assembly
	Retrieving submitted data
	Rendering prepopulated forms
	Creating application logic to render a prepopulated form


	Rendering Forms using the XML Form Module API
	Creating a Form object
	Importing packets
	Importing a template packet
	Importing a datasets packet
	Determining if a packet exists

	Setting configuration values
	Setting the destination configuration value
	Setting the pdf.xdc.uri configuration value
	Determining a configuration value

	Rendering PDF documents

	Character Sets and Unicode Encodings
	Language and Locale Combinations
	Glossary
	Index

	doc_map
	JBoss_install_config
	Installing and Configuring LiveCycle

	transformation_reference
	Contents
	Preface
	What’s in this reference?
	Who should read this guide?
	Related documentation

	About LiveCycle Forms Transformations
	How to use this reference

	Button Object
	Check Box Object
	Circle Object
	Content Area Object
	Date/Time Field Object
	Decimal Field Object
	Drop-down List Object
	Email Submit Button Object
	HTTP Submit Button Object
	Image Object
	Image Field Object
	Line Object
	List Box Object
	Numeric Field Object
	Page Object
	Password Field Object
	Radio Button Object
	Rectangle Object
	Reset Button Object
	Subform Object
	Text Object
	Text Field Object
	Endnotes

	um_spi_developer_guide
	Contents
	Preface
	What’s in this guide?
	Who should read this guide?
	Related documentation

	Introduction
	Understanding the authentication process
	Creating custom service providers
	Including the User Management SPI JAR file

	Creating Custom Authentication Providers
	About custom authentication providers
	Examining the authentication process
	User Management SPI interfaces
	Sample authentication provider

	Retrieving authentication values
	Retrieving configuration information
	Performing the authentication operation
	Sending authentication results to User Management

	Creating Custom Directory Service Providers
	Sample directory service provider
	Directory service provider interfaces
	Implementing the directory service provider interfaces
	DirectoryPrincipalProvider interface
	DirectoryUserProvider interface
	DirectoryGroupProvider interface

	Connecting to the directory
	Getting the directory properties
	GroupConfigBO interface
	UserConfigBO interface

	Testing the connection

	Configuring User Management for custom directory service providers

	Registering Custom Service Providers
	User Management configuration settings
	XML configuration file
	XML element types in the configuration file

	Defining domains for custom service providers
	Configuring User Management to use custom authentication providers
	Identifying authentication providers
	Configuring domains for authentication providers

	Configuring User Management to use directory service providers

	Deploying Custom Service Providers
	Packaging your custom service provider
	Repackaging the LiveCycle EAR file
	Deploying custom service providers


	Index

	whats_new


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


	01_GuideText: Summarizes the new features in this release of Adobe LiveCycle Forms.
	01_bullet: l
	02_bullet: l
	01_GuideName: 
	02_GuideName: 
	03_bullet: l
	03_GuideName: 
	03_GuideText: Describes how to install and configure LiveCycle products and deploy to a JBoss® Application Server.
	05_bullet: l
	05_GuideName: 
	06_bullet: l
	06_GuideName: 
	07_bullet: l
	07_GuideName: 
	08_bullet: l
	08_GuideName: 
	09_bullet: l
	09_GuideName: 
	10_bullet: l
	10_GuideName: 
	11_bullet: l
	11_GuideName: 
	12_bullet: l
	12_GuideName: 
	05_GuideText: Describes how to install and configure LiveCycle products and deploy to a BEA WebLogic® Server.
	04_bullet: l
	04_GuideName: 
	02_GuideText: Provides general information about LiveCycle Forms and how it integrates with other Adobe products.
	04_GuideText: Describes how to install and configure LiveCycle products and deploy to an IBM® WebSphere® Application Server.
	06_GuideText: Describes the product architecture and how to develop applications for use with LiveCycle Forms.
	07_GuideText: Provides information on the usage of the programmatic interfaces and classes that are used to create custom service providers for Adobe User Management.
	08_GuideText: Provides a reference of the Form Server Module API, including a description and explanation of its classes and methods.
	09_GuideText: Provides a reference of the XML Form Module API, including a description and explanation of its classes and methods.
	10_GuideText: Provides a reference of the User Management SPI, including a description and explanation of its classes and methods.
	11_GuideText: Provides a reference of the form objects and associated properties that are supported in each web browser.
	12_GuideText: Provides late-breaking information about LiveCycle Forms.


